Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update README.md #97

Open
wants to merge 1 commit into
base: master
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 4 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -130,6 +130,8 @@ Please feel free to [pull requests](https://github.com/kjw0612/awesome-deep-visi
* Justin Johnson, Alexandre Alahi, Li Fei-Fei, Perceptual Losses for Real-Time Style Transfer and Super-Resolution, arXiv:1603.08155, 2016. [[Paper]](http://arxiv.org/abs/1603.08155) [[Supplementary]](http://cs.stanford.edu/people/jcjohns/papers/fast-style/fast-style-supp.pdf)
* SRGAN
* Christian Ledig, Lucas Theis, Ferenc Huszar, Jose Caballero, Andrew Cunningham, Alejandro Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, Wenzhe Shi, Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network, arXiv:1609.04802v3, 2016. [[Paper]](https://arxiv.org/pdf/1609.04802v3.pdf)
* EPSR
* Subeesh Vasu, Nimisha T. M., A. N. Rajagopalan, Analyzing Perception-Distortion Tradeoff using Enhanced Perceptual Super-resolution Network, ECCV Workshops, 2018. [[web]](https://github.com/subeeshvasu/2018_subeesh_epsr_eccvw) [[Paper]](https://arxiv.org/pdf/1811.00344.pdf)
* Others
* Osendorfer, Christian, Hubert Soyer, and Patrick van der Smagt, Image Super-Resolution with Fast Approximate Convolutional Sparse Coding, ICONIP, 2014. [[Paper ICONIP-2014]](http://brml.org/uploads/tx_sibibtex/281.pdf)

Expand All @@ -141,8 +143,10 @@ Please feel free to [pull requests](https://github.com/kjw0612/awesome-deep-visi
* Blur Removal
* Christian J. Schuler, Michael Hirsch, Stefan Harmeling, Bernhard Schölkopf, Learning to Deblur, arXiv:1406.7444 [[Paper]](http://arxiv.org/pdf/1406.7444.pdf)
* Jian Sun, Wenfei Cao, Zongben Xu, Jean Ponce, Learning a Convolutional Neural Network for Non-uniform Motion Blur Removal, CVPR, 2015 [[Paper]](http://arxiv.org/pdf/1503.00593)
* Subeesh Vasu, A. N. Rajagopalan, From local to global: Edge profiles to camera motion in blurred images, CVPR, 2017 [[web]](https://subeeshvasu.github.io/2017_subeesh_from_cvpr/) [[Paper]](http://openaccess.thecvf.com/content_cvpr_2017/papers/Vasu_From_Local_to_CVPR_2017_paper.pdf)
* Image Deconvolution [[Web]](http://lxu.me/projects/dcnn/) [[Paper]](http://lxu.me/mypapers/dcnn_nips14.pdf)
* Li Xu, Jimmy SJ. Ren, Ce Liu, Jiaya Jia, Deep Convolutional Neural Network for Image Deconvolution, NIPS, 2014.
* Subeesh Vasu, Venkatesh Maligireddy, A. N. Rajagopalan, Non-blind Deblurring: Handling Kernel Uncertainty with CNNs, CVPR, 2018. [[web]](https://github.com/subeeshvasu/2018_subeesh_nbd_cvpr) [[Paper]](http://openaccess.thecvf.com/content_cvpr_2018/papers/Vasu_Non-Blind_Deblurring_Handling_CVPR_2018_paper.pdf)
* Deep Edge-Aware Filter [[Paper]](http://jmlr.org/proceedings/papers/v37/xub15.pdf)
* Li Xu, Jimmy SJ. Ren, Qiong Yan, Renjie Liao, Jiaya Jia, Deep Edge-Aware Filters, ICML, 2015.
* Computing the Stereo Matching Cost with a Convolutional Neural Network [[Paper]](http://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Zbontar_Computing_the_Stereo_2015_CVPR_paper.pdf)
Expand Down