Skip to content
This repository has been archived by the owner on Apr 24, 2024. It is now read-only.

Adds a property string to ase_to_tensormap #55

Open
wants to merge 6 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 5 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
28 changes: 21 additions & 7 deletions src/equisolve/utils/convert.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,8 @@
def ase_to_tensormap(
frames: List[ase.Atoms], energy: str = None, forces: str = None, stress: str = None
) -> TensorMap:
"""Store informations from :class:`ase.Atoms` in a :class:`equistore.TensorMap`.
"""Store informations from :class:`ase.Atoms`
in a :class:`equistore.TensorMap`.

:param frames:
ase.Atoms or list of ase.Atoms
Expand All @@ -35,26 +36,39 @@ def ase_to_tensormap(
if not isinstance(frames, list):
frames = [frames]

values = [f.info[energy] for f in frames]
if energy is not None:
values = [f.info[energy] for f in frames]
else:
energy = "energy"
values = [f.get_potential_energy() for f in frames]
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

this also needs a check if energy is present right?

Copy link
Collaborator Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

mhh, honestly I wanted this to fail since having gradients available but not the property, seems a bit weird to me

Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

you are right, forgot that this just extracts the property


if forces is not None:
positions_gradients = [-f.arrays[forces] for f in frames]
else:
positions_gradients = None
try:
positions_gradients = [-f.get_forces() for f in frames]
except ase.ase.calculators.calculator.PropertyNotImplementedError:
positions_gradients = None
bananenpampe marked this conversation as resolved.
Show resolved Hide resolved

if stress is not None:
cell_gradients = [-f.arrays[stress] for f in frames]
cell_gradients = [-f.info[stress] for f in frames]
else:
cell_gradients = None
try:
cell_gradients = [-f.get_stress(voigt=False) for f in frames]
except ase.ase.calculators.calculator.PropertyNotImplementedError:
cell_gradients = None

return properties_to_tensormap(values, positions_gradients, cell_gradients)
return properties_to_tensormap(
values, positions_gradients, cell_gradients, property_name=energy
)


def properties_to_tensormap(
values: List[float],
positions_gradients: List[np.ndarray] = None,
cell_gradients: List[np.ndarray] = None,
is_structure_property: bool = True,
property_name: str = "property",
) -> TensorMap:
"""Create a :class:`equistore.TensorMap` from array like properties.

Expand Down Expand Up @@ -94,7 +108,7 @@ def properties_to_tensormap(
values=np.asarray(values).reshape(-1, 1),
samples=Labels(["structure"], np.arange(n_structures).reshape(-1, 1)),
components=[],
properties=Labels(["property"], np.array([(0,)])),
properties=Labels([property_name], np.array([(0,)])),
)

if positions_gradients is not None:
Expand Down
69 changes: 67 additions & 2 deletions tests/equisolve_tests/utils/convert.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,8 @@
import ase
import numpy as np
import pytest
from ase.calculators.calculator import Calculator, all_changes
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

can this be removed?

from ase.stress import voigt_6_to_full_3x3_stress
from numpy.testing import assert_equal

from equisolve.utils import ase_to_tensormap, properties_to_tensormap
Expand All @@ -35,15 +37,17 @@ def forces(self):

@pytest.fixture
def stress(self):
return [i for i in self.rng.random([self.n_strucs, 3, 3])]
return [
voigt_6_to_full_3x3_stress(i) for i in self.rng.random([self.n_strucs, 6])
]

def test_ase_to_tensormap(self, energies, forces, stress):
frames = []
for i in range(len(energies)):
frame = ase.Atoms(self.n_atoms * "H")
frame.info["energy"] = energies[i]
frame.arrays["forces"] = forces[i]
frame.arrays["stress"] = stress[i]
frame.info["stress"] = stress[i]
frames.append(frame)

property_tm = ase_to_tensormap(frames, "energy", "forces", "stress")
Expand All @@ -61,6 +65,67 @@ def test_ase_to_tensormap(self, energies, forces, stress):
block.gradient("cell").values, -np.array(stress).reshape(-1, 3, 3, 1)
)

def test_ase_to_tensormap_w_calculator(self, energies, forces, stress):
class CustomCalculator(Calculator):
implemented_properties = ("energy", "forces", "stress")

def __init__(self, energy, forces, stress, **kwargs):
Calculator.__init__(self, **kwargs)
self.energy = energy # Predefined potential energy
self.forces = forces # Predefined forces
self.stress = stress # Predefined stress

def calculate(
self, atoms=None, properties=("energy"), system_changes=all_changes
):
super().calculate(atoms, properties, system_changes)

self.results["energy"] = self.energy
self.results["forces"] = self.forces
self.results["stress"] = self.stress

frames = []
for i in range(len(energies)):
frame = ase.Atoms(self.n_atoms * "H")
frame.calc = CustomCalculator(energies[i], forces[i], stress[i])
frame.info["energy"] = energies[i]
frame.arrays["forces"] = forces[i]
frame.info["stress"] = stress[i]
frames.append(frame)

property_tm = ase_to_tensormap(frames, "energy", "forces", "stress")

# Use `[0]` function without parameters to check that TensorMap
# only has one block.
block = property_tm[0]

assert_equal(block.values, np.array(energies).reshape(-1, 1))
assert_equal(
block.gradient("positions").values,
-np.concatenate(forces, axis=0).reshape(-1, 3, 1),
)
assert_equal(
block.gradient("cell").values, -np.array(stress).reshape(-1, 3, 3, 1)
)

property_tm = ase_to_tensormap(frames)
block = property_tm[0]

assert_equal(block.values, np.array(energies).reshape(-1, 1))
assert_equal(
block.gradient("positions").values,
-np.concatenate(forces, axis=0).reshape(-1, 3, 1),
)

print(block.gradient("cell").values.shape)
print(np.array(stress).reshape(-1, 3, 3, 1).shape)

print(block.gradient("cell").values + np.array(stress).reshape(-1, 3, 3, 1))

assert_equal(
block.gradient("cell").values, -np.array(stress).reshape(-1, 3, 3, 1)
)

def test_properties_to_tensormap(self, energies, forces, stress):
property_tm = properties_to_tensormap(energies, forces, stress)
block = property_tm[0]
Expand Down