Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merge TorchScript tests with regular tests #32

Merged
merged 5 commits into from
Dec 5, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
29 changes: 15 additions & 14 deletions setup.py
Original file line number Diff line number Diff line change
@@ -1,31 +1,32 @@
from setuptools import setup, find_packages
import sys
import subprocess

from setuptools import find_packages, setup

# Detecting if pytorch with or without CUDA support should be installed
try:
subprocess.check_output('nvidia-smi')
subprocess.check_output("nvidia-smi")
HAS_NVIDIA = True
except:
HAS_NVIDIA = False

if HAS_NVIDIA:
dependency_links = []
else:
dependency_links = ['https://download.pytorch.org/whl/cpu']
print("torch_spex setup info: Did not find NVIDIA card defaulting to CPU-only installation")
dependency_links = ["https://download.pytorch.org/whl/cpu"]
print(
"torch_spex setup info: Did not find NVIDIA card, defaulting to CPU-only installation"
)

setup(
name='torch_spex',
packages = find_packages(),
name="torch_spex",
packages=find_packages(),
install_requires=[
'sphericart[torch] @ git+https://github.com/lab-cosmo/sphericart.git@99761b0', # pre-built wheels don't work
'numpy',
'ase',
'torch',
'scipy',
'metatensor[torch] @ https://github.com/lab-cosmo/metatensor/archive/0436e27.zip',
"sphericart[torch] @ git+https://github.com/lab-cosmo/sphericart.git@ecf4145", # pre-built wheels don't work
"numpy",
"ase",
"torch",
"scipy",
"metatensor[torch]",
],
dependency_links = dependency_links
dependency_links=dependency_links,
)
65 changes: 22 additions & 43 deletions tests/test_spherical_expansions.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,7 +4,6 @@

import metatensor.torch
from metatensor.torch import Labels, TensorBlock, TensorMap
import numpy as np
import ase.io

from torch_spex.spherical_expansions import VectorExpansion, SphericalExpansion
Expand All @@ -18,7 +17,9 @@ class TestEthanol1SphericalExpansion:
device = "cpu"
dtype = torch.float32
frames = ase.io.read('datasets/rmd17/ethanol1.extxyz', ':1')
all_species = list(np.unique([frame.numbers for frame in frames]))
all_species = torch.unique(torch.concatenate([torch.tensor(frame.numbers)
for frame in frames]))
all_species = [int(species) for species in all_species]
with open("tests/data/expansion_coeffs-ethanol1_0-hypers.json", "r") as f:
hypers = json.load(f)

Expand All @@ -34,16 +35,22 @@ def test_vector_expansion_coeffs(self):
tm_ref = metatensor.torch.to(tm_ref, device=self.device, dtype=self.dtype)
# we need to sort both computed and reference pair expansion coeffs,
# because ase.neighborlist can get different neighborlist order for some reasons
tm_ref = sort_tm(tm_ref)
tm_ref = metatensor.torch.sort(tm_ref)
vector_expansion = VectorExpansion(self.hypers, self.all_species,
device=self.device, dtype=self.dtype)
with torch.no_grad():
tm = sort_tm(vector_expansion.forward(**self.batch))
tm = metatensor.torch.sort(vector_expansion.forward(**self.batch))
# Default types are float32 so we cannot get higher accuracy than 1e-7.
# Because the reference value have been cacluated using float32 and
# now we using float64 computation the accuracy had to be decreased again
assert metatensor.torch.allclose(tm_ref, tm, atol=1e-5, rtol=1e-5)

vector_expansion_script = torch.jit.script(vector_expansion)
with torch.no_grad():
tm_script = metatensor.torch.sort(vector_expansion_script.forward(**self.batch))
assert metatensor.torch.allclose(tm, tm_script, atol=1e-5,
rtol=torch.finfo(self.dtype).eps*10)

def test_spherical_expansion_coeffs(self):
tm_ref = metatensor.torch.load("tests/data/spherical_expansion_coeffs-ethanol1_0-data.npz")
tm_ref = metatensor.torch.to(tm_ref, device=self.device, dtype=self.dtype)
Expand All @@ -56,6 +63,12 @@ def test_spherical_expansion_coeffs(self):
# now we using float64 computation the accuracy had to be decreased again
assert metatensor.torch.allclose(tm_ref, tm, atol=1e-5, rtol=1e-5)

spherical_expansion_script = torch.jit.script(spherical_expansion_calculator)
with torch.no_grad():
tm_script = metatensor.torch.sort(spherical_expansion_script.forward(**self.batch))
assert metatensor.torch.allclose(tm, tm_script, atol=1e-5,
rtol=torch.finfo(self.dtype).eps*10)

def test_spherical_expansion_coeffs_alchemical(self):
with open("tests/data/expansion_coeffs-ethanol1_0-alchemical-hypers.json", "r") as f:
hypers = json.load(f)
Expand Down Expand Up @@ -88,7 +101,9 @@ class TestArtificialSphericalExpansion:
device = "cpu"
dtype = torch.float32
frames = ase.io.read('tests/datasets/artificial.extxyz', ':')
all_species = list(np.unique(np.hstack([frame.numbers for frame in frames])))
all_species = torch.unique(torch.concatenate([torch.tensor(frame.numbers)
for frame in frames]))
all_species = [int(species) for species in all_species]
with open("tests/data/expansion_coeffs-artificial-hypers.json", "r") as f:
hypers = json.load(f)

Expand All @@ -101,11 +116,11 @@ class TestArtificialSphericalExpansion:
def test_vector_expansion_coeffs(self):
tm_ref = metatensor.torch.load("tests/data/vector_expansion_coeffs-artificial-data.npz")
tm_ref = metatensor.torch.to(tm_ref, device=self.device, dtype=self.dtype)
tm_ref = sort_tm(tm_ref)
tm_ref = metatensor.torch.sort(tm_ref)
vector_expansion = VectorExpansion(self.hypers, self.all_species,
device=self.device, dtype=self.dtype)
with torch.no_grad():
tm = sort_tm(vector_expansion.forward(**self.batch))
tm = metatensor.torch.sort(vector_expansion.forward(**self.batch))
assert metatensor.torch.allclose(tm_ref, tm, atol=1e-5, rtol=1e-5)

def test_spherical_expansion_coeffs(self):
Expand Down Expand Up @@ -137,39 +152,3 @@ def test_spherical_expansion_coeffs_artificial(self):
with torch.no_grad():
tm = spherical_expansion_calculator.forward(**self.batch)
assert metatensor.torch.allclose(tm_ref, tm, atol=1e-5, rtol=1e-5)

### these util functions will be removed once lab-cosmo/metatensor/pull/281 is merged
def native_list_argsort(native_list):
return sorted(range(len(native_list)), key=native_list.__getitem__)

def sort_tm(tm):
blocks = []
for _, block in tm.items():
values = block.values

samples_values = block.samples.values
sorted_idx = native_list_argsort([tuple(row.tolist()) for row in block.samples.values])
samples_values = samples_values[sorted_idx]
values = values[sorted_idx]

components_values = []
for i, component in enumerate(block.components):
component_values = component.values
sorted_idx = native_list_argsort([tuple(row.tolist()) for row in component.values])
components_values.append( component_values[sorted_idx] )
values = np.take(values, sorted_idx, axis=i+1)

properties_values = block.properties.values
sorted_idx = native_list_argsort([tuple(row.tolist()) for row in block.properties.values])
properties_values = properties_values[sorted_idx]
values = values[..., sorted_idx]

blocks.append(
TensorBlock(
values=values,
samples=Labels(values=samples_values, names=block.samples.names),
components=[Labels(values=components_values[i], names=component.names) for i, component in enumerate(block.components)],
properties=Labels(values=properties_values, names=block.properties.names)
)
)
return TensorMap(keys=tm.keys, blocks=blocks)
73 changes: 0 additions & 73 deletions tests/test_torchscript.py

This file was deleted.