generated from langchain-ai/integration-repo-template
-
Notifications
You must be signed in to change notification settings - Fork 123
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'langchain-ai:main' into bedrock-token-count-callbacks
- Loading branch information
Showing
7 changed files
with
590 additions
and
253 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
from langchain_aws.embeddings.bedrock import BedrockEmbeddings | ||
|
||
__all__ = ["BedrockEmbeddings"] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,218 @@ | ||
import asyncio | ||
import json | ||
import os | ||
from typing import Any, Dict, List, Optional | ||
|
||
import numpy as np | ||
from langchain_core.embeddings import Embeddings | ||
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator | ||
from langchain_core.runnables.config import run_in_executor | ||
|
||
|
||
class BedrockEmbeddings(BaseModel, Embeddings): | ||
"""Bedrock embedding models. | ||
To authenticate, the AWS client uses the following methods to | ||
automatically load credentials: | ||
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html | ||
If a specific credential profile should be used, you must pass | ||
the name of the profile from the ~/.aws/credentials file that is to be used. | ||
Make sure the credentials / roles used have the required policies to | ||
access the Bedrock service. | ||
""" | ||
|
||
""" | ||
Example: | ||
.. code-block:: python | ||
from langchain_community.bedrock_embeddings import BedrockEmbeddings | ||
region_name ="us-east-1" | ||
credentials_profile_name = "default" | ||
model_id = "amazon.titan-embed-text-v1" | ||
be = BedrockEmbeddings( | ||
credentials_profile_name=credentials_profile_name, | ||
region_name=region_name, | ||
model_id=model_id | ||
) | ||
""" | ||
|
||
client: Any #: :meta private: | ||
"""Bedrock client.""" | ||
region_name: Optional[str] = None | ||
"""The aws region e.g., `us-west-2`. Fallsback to AWS_DEFAULT_REGION env variable | ||
or region specified in ~/.aws/config in case it is not provided here. | ||
""" | ||
|
||
credentials_profile_name: Optional[str] = None | ||
"""The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which | ||
has either access keys or role information specified. | ||
If not specified, the default credential profile or, if on an EC2 instance, | ||
credentials from IMDS will be used. | ||
See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html | ||
""" | ||
|
||
model_id: str = "amazon.titan-embed-text-v1" | ||
"""Id of the model to call, e.g., amazon.titan-embed-text-v1, this is | ||
equivalent to the modelId property in the list-foundation-models api""" | ||
|
||
model_kwargs: Optional[Dict] = None | ||
"""Keyword arguments to pass to the model.""" | ||
|
||
endpoint_url: Optional[str] = None | ||
"""Needed if you don't want to default to us-east-1 endpoint""" | ||
|
||
normalize: bool = False | ||
"""Whether the embeddings should be normalized to unit vectors""" | ||
|
||
class Config: | ||
"""Configuration for this pydantic object.""" | ||
|
||
extra = Extra.forbid | ||
|
||
@root_validator() | ||
def validate_environment(cls, values: Dict) -> Dict: | ||
"""Validate that AWS credentials to and python package exists in environment.""" | ||
|
||
if values["client"] is not None: | ||
return values | ||
|
||
try: | ||
import boto3 | ||
|
||
if values["credentials_profile_name"] is not None: | ||
session = boto3.Session(profile_name=values["credentials_profile_name"]) | ||
else: | ||
# use default credentials | ||
session = boto3.Session() | ||
|
||
client_params = {} | ||
if values["region_name"]: | ||
client_params["region_name"] = values["region_name"] | ||
|
||
if values["endpoint_url"]: | ||
client_params["endpoint_url"] = values["endpoint_url"] | ||
|
||
values["client"] = session.client("bedrock-runtime", **client_params) | ||
|
||
except ImportError: | ||
raise ModuleNotFoundError( | ||
"Could not import boto3 python package. " | ||
"Please install it with `pip install boto3`." | ||
) | ||
except Exception as e: | ||
raise ValueError( | ||
"Could not load credentials to authenticate with AWS client. " | ||
"Please check that credentials in the specified " | ||
f"profile name are valid. Bedrock error: {e}" | ||
) from e | ||
|
||
return values | ||
|
||
def _embedding_func(self, text: str) -> List[float]: | ||
"""Call out to Bedrock embedding endpoint.""" | ||
# replace newlines, which can negatively affect performance. | ||
text = text.replace(os.linesep, " ") | ||
|
||
# format input body for provider | ||
provider = self.model_id.split(".")[0] | ||
_model_kwargs = self.model_kwargs or {} | ||
input_body = {**_model_kwargs} | ||
if provider == "cohere": | ||
if "input_type" not in input_body.keys(): | ||
input_body["input_type"] = "search_document" | ||
input_body["texts"] = [text] | ||
else: | ||
# includes common provider == "amazon" | ||
input_body["inputText"] = text | ||
body = json.dumps(input_body) | ||
|
||
try: | ||
# invoke bedrock API | ||
response = self.client.invoke_model( | ||
body=body, | ||
modelId=self.model_id, | ||
accept="application/json", | ||
contentType="application/json", | ||
) | ||
|
||
# format output based on provider | ||
response_body = json.loads(response.get("body").read()) | ||
if provider == "cohere": | ||
return response_body.get("embeddings")[0] | ||
else: | ||
# includes common provider == "amazon" | ||
return response_body.get("embedding") | ||
except Exception as e: | ||
raise ValueError(f"Error raised by inference endpoint: {e}") | ||
|
||
def _normalize_vector(self, embeddings: List[float]) -> List[float]: | ||
"""Normalize the embedding to a unit vector.""" | ||
emb = np.array(embeddings) | ||
norm_emb = emb / np.linalg.norm(emb) | ||
return norm_emb.tolist() | ||
|
||
def embed_documents(self, texts: List[str]) -> List[List[float]]: | ||
"""Compute doc embeddings using a Bedrock model. | ||
Args: | ||
texts: The list of texts to embed | ||
Returns: | ||
List of embeddings, one for each text. | ||
""" | ||
results = [] | ||
for text in texts: | ||
response = self._embedding_func(text) | ||
|
||
if self.normalize: | ||
response = self._normalize_vector(response) | ||
|
||
results.append(response) | ||
|
||
return results | ||
|
||
def embed_query(self, text: str) -> List[float]: | ||
"""Compute query embeddings using a Bedrock model. | ||
Args: | ||
text: The text to embed. | ||
Returns: | ||
Embeddings for the text. | ||
""" | ||
embedding = self._embedding_func(text) | ||
|
||
if self.normalize: | ||
return self._normalize_vector(embedding) | ||
|
||
return embedding | ||
|
||
async def aembed_query(self, text: str) -> List[float]: | ||
"""Asynchronous compute query embeddings using a Bedrock model. | ||
Args: | ||
text: The text to embed. | ||
Returns: | ||
Embeddings for the text. | ||
""" | ||
|
||
return await run_in_executor(None, self.embed_query, text) | ||
|
||
async def aembed_documents(self, texts: List[str]) -> List[List[float]]: | ||
"""Asynchronous compute doc embeddings using a Bedrock model. | ||
Args: | ||
texts: The list of texts to embed | ||
Returns: | ||
List of embeddings, one for each text. | ||
""" | ||
|
||
result = await asyncio.gather(*[self.aembed_query(text) for text in texts]) | ||
|
||
return list(result) |
Oops, something went wrong.