A multi-scale weakly supervised learning method with adaptive online noise correction for high-resolution change detection of built-up areas
Author: Yinxia Cao, Xin Huang, Qihao Weng | Paper link | Date: 2023
download link in google drive or [Baiduyunpan] (link:https://pan.baidu.com/s/17iHRoWs8XOY_93s9s5IqZQ
, code:mhiz).
BA dataset excluding test cities (Beijing, Shanghai, Xian, and Kunming)
- training dataset: E:/yinxcao/ZY3LC/datanew8bit/datalist_posneg_train_0.6.csv
- test dataset: E:/yinxcao/ZY3LC/datanew8bit/datalist_posneg_test_0.6.csv
- training a multi-scale classification network
- generating the multi-scale cam
- generating pseudo-labels with CRF and thresholding
- adaptive online noise correction for BA detection: 1) obtain correction time; 2) correct labels
python train_mitb1_0.6_cam_stride_tlcmulti4.py
python demo_cues_torch_lvwang_mitb1_cam_stride_tlc_multi4.py
python cam_to_ir_label_tlcmult4.py
python train_mitb1_0.6_cam_stride_tlcmulti4_RRM_adele.py
python ttest_mitb1_0.6_cam_stride_rrm_tlcmulti4_adele.py
- predict BA results for each date
python predict_rrm_tlcmulti4_adele_wholeimg.py
- generate pseudo labels at pixel, object, and pixel+object levels
demo_1116_gen_pix_beijing.m
demo_1117_gen_obj_diff_beijing.m
demo_1117_gen_change_cert.m
- clip sample
demo_1117_clipsample_imglab_bj.m
demo_1118_testsample_diffarea.m
- training change detection models
see directory
BANetCD
- stats model parameters
see package
torchstat