Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: inference notebook, script, and app #3

Open
wants to merge 3 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
204 changes: 204 additions & 0 deletions app.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,204 @@
import os
import sys

import fire
import gradio as gr
import torch
import transformers
from peft import PeftModel
from transformers import GenerationConfig, LlamaForCausalLM, LlamaTokenizer

from utils.callbacks import Iteratorize, Stream
from utils.prompter import Prompter

if torch.cuda.is_available():
device = "cuda"
else:
device = "cpu"

try:
if torch.backends.mps.is_available():
device = "mps"
except: # noqa: E722
pass


def main(
load_8bit: bool = False,
base_model: str = "",
lora_weights: str = "",
prompt_template: str = "", # The prompt template to use, will default to alpaca.
server_name: str = "0.0.0.0", # Allows to listen on all interfaces by providing '0.
share_gradio: bool = False,
):
base_model = base_model or os.environ.get("BASE_MODEL", "")
assert (
base_model
), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"

prompter = Prompter(prompt_template)
tokenizer = LlamaTokenizer.from_pretrained(base_model)
if device == "cuda":
model = LlamaForCausalLM.from_pretrained(
base_model,
load_in_8bit=load_8bit,
torch_dtype=torch.float16,
device_map="auto",
)
model = PeftModel.from_pretrained(
model,
lora_weights,
torch_dtype=torch.float16,
)
elif device == "mps":
model = LlamaForCausalLM.from_pretrained(
base_model,
device_map={"": device},
torch_dtype=torch.float16,
)
model = PeftModel.from_pretrained(
model,
lora_weights,
device_map={"": device},
torch_dtype=torch.float16,
)
else:
model = LlamaForCausalLM.from_pretrained(
base_model, device_map={"": device}, low_cpu_mem_usage=True
)
model = PeftModel.from_pretrained(
model,
lora_weights,
device_map={"": device},
)

# unwind broken decapoda-research config
model.config.pad_token_id = tokenizer.pad_token_id = 0 # unk
model.config.bos_token_id = 1
model.config.eos_token_id = 2

if not load_8bit:
model.half() # seems to fix bugs for some users.

model.eval()
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)

def evaluate(
instruction,
input=None,
temperature=0.1,
top_p=0.75,
top_k=40,
num_beams=4,
max_new_tokens=128,
stream_output=False,
**kwargs,
):
prompt = prompter.generate_prompt(instruction, input)
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to(device)
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
**kwargs,
)

generate_params = {
"input_ids": input_ids,
"generation_config": generation_config,
"return_dict_in_generate": True,
"output_scores": True,
"max_new_tokens": max_new_tokens,
}

if stream_output:
def generate_with_callback(callback=None, **kwargs):
kwargs.setdefault(
"stopping_criteria", transformers.StoppingCriteriaList()
)
kwargs["stopping_criteria"].append(Stream(callback_func=callback))
with torch.no_grad():
model.generate(**kwargs)

def generate_with_streaming(**kwargs):
return Iteratorize(generate_with_callback, kwargs, callback=None)

with generate_with_streaming(**generate_params) as generator:
for output in generator:
# new_tokens = len(output) - len(input_ids[0])
decoded_output = tokenizer.decode(output)

if output[-1] in [tokenizer.eos_token_id]:
break

yield prompter.get_response(decoded_output)
return # early return for stream_output

# Without streaming
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
yield prompter.get_response(output)

gr.Interface(
fn=evaluate,
inputs=[
gr.components.Textbox(
lines=2,
label="Instruction",
placeholder="Tell me about alpacas.",
),
gr.components.Textbox(lines=2, label="Input", placeholder="none"),
gr.components.Slider(minimum=0, maximum=1, value=0.1, label="Temperature"),
gr.components.Slider(minimum=0, maximum=1, value=0.75, label="Top p"),
gr.components.Slider(
minimum=0, maximum=100, step=1, value=40, label="Top k"
),
gr.components.Slider(minimum=1, maximum=4, step=1, value=4, label="Beams"),
gr.components.Slider(
minimum=1, maximum=2000, step=1, value=128, label="Max tokens"
),
gr.components.Checkbox(label="Stream output"),
],
outputs=[
gr.inputs.Textbox(
lines=5,
label="Output",
)
],
title="🧑‍🏫🤏 LoRA-Instruct",
description="🧑‍🏫🤏 LoRA-Instruct is a LoRA instruction fine-tuning for permissive open source models. For more information, please visit [the project's website](https://github.com/leehanchung/lora-instruct).", # noqa: E501
).queue().launch(server_name="0.0.0.0", share=share_gradio)
# Old testing code follows.

"""
# testing code for readme
for instruction in [
"Tell me about alpacas.",
"Tell me about the president of Mexico in 2019.",
"Tell me about the king of France in 2019.",
"List all Canadian provinces in alphabetical order.",
"Write a Python program that prints the first 10 Fibonacci numbers.",
"Write a program that prints the numbers from 1 to 100. But for multiples of three print 'Fizz' instead of the number and for the multiples of five print 'Buzz'. For numbers which are multiples of both three and five print 'FizzBuzz'.", # noqa: E501
"Tell me five words that rhyme with 'shock'.",
"Translate the sentence 'I have no mouth but I must scream' into Spanish.",
"Count up from 1 to 500.",
]:
print("Instruction:", instruction)
print("Response:", evaluate(instruction))
print()
"""


if __name__ == "__main__":
fire.Fire(main)
59 changes: 59 additions & 0 deletions inference.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
import os
import sys

import fire
import gradio as gr
import torch
import transformers
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer, GenerationConfig, LlamaForCausalLM, LlamaTokenizer

from utils.callbacks import Iteratorize, Stream
from utils.prompter import Prompter

if torch.cuda.is_available():
device = "cuda:0"
else:
device = "cpu"

try:
if torch.backends.mps.is_available():
device = "mps"
except: # noqa: E722
pass


def main(base_model: str, lora_weights: str, load_8bit: bool = False,):
# if device == "cuda:o":
print(torch.cuda.is_available())
model = AutoModelForCausalLM.from_pretrained(
base_model,
load_in_8bit=load_8bit,
torch_dtype=torch.float16,
device_map="auto",
)
model = PeftModel.from_pretrained(
model,
lora_weights,
torch_dtype=torch.float16,
)
print(model.eval())

input = "this is a good day to die"
tokenizer = AutoTokenizer.from_pretrained(base_model)

input_ids = tokenizer(input, return_tensors="pt").input_ids.to(device)

greedy_output = model.generate(
input_ids=input_ids,
# generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=500,
)
print("Output:\n" + 100 * '-')
print(tokenizer.decode(greedy_output[0][0], skip_special_tokens=True))


if __name__ == "__main__":
fire.Fire(main)
Loading