Skip to content

Commit

Permalink
Merge pull request #1 from leibniz-psychology/staging
Browse files Browse the repository at this point in the history
Staging
  • Loading branch information
Rostu authored Nov 23, 2023
2 parents 845f828 + 42e65ca commit 5371af0
Show file tree
Hide file tree
Showing 33 changed files with 14,050 additions and 69 deletions.
21 changes: 21 additions & 0 deletions .github/pull_request_template.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
# Pull-Request

## References

*Add references/links to any related issues or PRs. These may include:*

- Fixes #`issue-number` (if this fixes an issue ticket)
- plan.io ticket number

## Description

Short summary of changes (1-2 sentences).

## Instructions for Reviewers

*Are there special features to be aware of when looking at the code changes. Please list:*

something

- ...
- ...
7 changes: 7 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,13 @@ Sonstiges:
Bugs:
* updated Dockerfile, removed static ssl files

## Release 1.0.8
### 11.2023
Bugs:
* added new datasets CAMA_TFP_Reduce, CAMA_TFP_Enhance
* added metadata files for all datasets


## Hotfix Release 1.0.5
### 04.2023
Bugs:
Expand Down
52 changes: 27 additions & 25 deletions NAMESPACE
Original file line number Diff line number Diff line change
@@ -1,25 +1,27 @@
# Generated by roxygen2: do not edit by hand

importFrom("stats", "as.formula", "pnorm", "predict", "qnorm")
importFrom("utils", "str")

export(cumulforest)
export(forest)
export(funnelPLot)
export(jsonSummary)
export(metapower)
export(netMetaForestplot)
export(netMetaMatrix)
export(netMetaModel)
export(netMetaNetgraph)
export(netMetaSummary)
export(netMetagetTRTS)
export(pcurves)
export(powersim)
export(rmaMVModel)
export(rmaModel)
export(scatterPlot)
export(pureForest)
export(pureCumulForest)
export(rma)
export(checkIntegrity)
# Generated by roxygen2: do not edit by hand

importFrom("stats", "as.formula", "pnorm", "predict", "qnorm")
importFrom("utils", "str")

export(cumulforest)
export(forest)
export(funnelPLot)
export(jsonSummary)
export(metapower)
export(netMetaForestplot)
export(netMetaMatrix)
export(netMetaModel)
export(netMetaNetgraph)
export(netMetaSummary)
export(netMetagetTRTS)
export(pcurves)
export(powersim)
export(rmaMVModel)
export(rmaModel)
export(scatterPlot)
export(pureForest)
export(pureCumulForest)
export(rma)
export(checkIntegrity)
export(checkData)
export(checkParameter)
51 changes: 26 additions & 25 deletions R/checkData.R
Original file line number Diff line number Diff line change
@@ -1,25 +1,26 @@
#' @title check data
#' @description
#' Helper function to check if the given dataset exists
#' @param d
#' A \code{string} representing the dataset name that should be used.
checkData <- function(d) {

dat <- tryCatch(
{get(d)},
error=function(cond) {
message(paste("This dataset does not exist:", d))
message("Here's the original error message:")
message(cond)
stop("stopped code because of error")
},
warning=function(cond) {
message(paste("input caused a warning:", d))
message("Here's the original warning message:")
message(cond)
# Choose a return value in case of warning
stop("stopped code because of error")
}
)
return(dat)
}
#' @title check data
#' @description
#' Helper function to check if the given dataset exists
#' @param d
#' A \code{string} representing the dataset name that should be used.

checkData <- function(d) {

dat <- tryCatch(
{get(d)},
error=function(cond) {
message(paste("This dataset does not exist:", d))
message("Here's the original error message:")
message(cond)
stop("stopped code because of error")
},
warning=function(cond) {
message(paste("input caused a warning:", d))
message("Here's the original warning message:")
message(cond)
# Choose a return value in case of warning
stop("stopped code because of error")
}
)
return(dat)
}
65 changes: 46 additions & 19 deletions R/checkIntegrity.R
Original file line number Diff line number Diff line change
@@ -1,19 +1,46 @@
#' @title check integrity
#' @description
#' Helper function to check if the
#' @export
#' @param d
#' A \code{string} representing the dataset name that should be used.
checkIntegrity <- function() {
datasetList<-data(package='psychOpenCama')$results[,"Item"]
tablesThatShouldExist<-c("r_year","r_peer","r_author")

for (datasetName in datasetList) {
dat<-checkData(datasetName)
print(datasetName)
checkParameter(dat,tablesThatShouldExist)

}

}

#' @title check integrity
#' @description
#' Helper function to check if the
#' @export
#' @param d
#' A \code{string} representing the dataset name that should be used.
# Load the required library
library(jsonlite)



checkIntegrity <- function() {
datasetList<-data(package='psychOpenCama')$results[,"Item"]

tablesThatShouldExist<-c("r_year","r_peer","r_author")
metadata_folder <- "metadata"


for (datasetName in datasetList) {
dat<-psychOpenCama::checkData(datasetName)
print(datasetName)
checkParameter(dat,tablesThatShouldExist)


jsonFileName <- paste0("Datensatz_", datasetName,".json")
#print(jsonFileName);

# Define the path to the JSON file within your package
json_file <- system.file("metadata", jsonFileName, package = "psychOpenCama")

rel_path_from_root <- file.path("metadata", jsonFileName)

if (file.exists(rel_path_from_root)) {
# Read and parse the JSON file
json_data <- jsonlite::fromJSON(rel_path_from_root)

# Print the JSON data (for demonstration purposes)
#print(json_data)
} else {
#cat("JSON file not found in the 'metadata' subfolder.\n")
}
}


}

Binary file removed data/CAMA_TFP.RData
Binary file not shown.
Binary file added data/CAMA_TFP_Enhance.RData
Binary file not shown.
Binary file added data/CAMA_TFP_Reduce.RData
Binary file not shown.
140 changes: 140 additions & 0 deletions metadata/Datensatz_CAMA_Abstractr.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,140 @@
{
"datensatz" : {
"name" : "Abstract rule learning",
"data_name":"CAMA_Abstractr",
"psychArchivesHandle": "http://dx.doi.org/10.23668/psycharchives.4740",
"domain": "Cognitive development",
"metaanalysis_type": "standard",
"moderators" : [{"type":"cat","value":"t_semantics","label": "Semantics"},{"type": "cat","value":"t_modality","label": "Modality" },{"type": "num","value":"s_meanage","label": "Mean Age" }],
"effect_strength" : {
"label" : "SMD",
"variable_labels":[
{
"name":"hedges_g",
"data_label_yi":"o_g_calc",
"varianz_label_vi": "o_g_var_calc"
},
{
"name":"cohens_d",
"data_label_yi":"o_d_calc",
"varianz_label_vi": "o_d_var_calc"
}
]
},
"analysis_levels":["outcome_ID","sample_ID","report_ID"]
},
"dokumentation" : {
"title": "Rabagliati, H,Ferguson, B,Lew‐Williams, C.The profile of abstract rule learning in infancy: Meta‐analytic and experimental evidence. Dev Sci.2019;22:e12704.",
"doi": "https://doi.org/10.1111/desc.12704",
"url":"",
"dataProvider": "http://metalab.stanford.edu/: Bergmann, C., Tsuji, S., Piccinini, P.E., Lewis, M.L., Braginsky, M., Frank, M.C., & Cristia, A. (2018). Promoting replicability in developmental research through meta-analyses: Insights from language acquisition research. Child Development, 89, 1996-2009 . DOI: 10.1111/cdev.13079 [Repository]",
"license": "CC BY 4.0",
"licenseUrl": "https://creativecommons.org/licenses/by-sa/4.0/",
"researchQuestion": "Can infants learn abstract repition rules from different types of stimuli?",
"literatureSelection": "Inclusion: (1) Participants were typically developing infants under 24 months of age, (2) participants were exposed to strings of three stimuli generated from a single repetition pattern (e.g. AAB, ABB), and (3) participants were tested on their behavioural response to new stringsgenerated from either the familiarized pattern (Familiar pattern trials)or a novel pattern (Novel pattern trials). Exclusion: (1) reports that used different paradigms or asked somewhat different questions, including neuroimaging studies, relational-match-to-sample studies, (3) studies that did not use repetition patterns, and (4) studies in which infants were exposed to two patterns",
"effectSize": "Hedge’s g, Cohen’s d",
"hierarchicalStructure": "Outcome – Sample - Report"
},
"literatureintraege": [
{
"shortCite": "Dawson & Gerken (2009)",
"doi": "https://doi.org/10.1016/j.cognition.2009.02.010",
"peerReviewed": true
},
{
"shortCite": "Saffran et al (2007)",
"doi": "https://psycnet.apa.org/doi/10.1016/j.cognition.2006.11.004",
"peerReviewed": true
},
{
"shortCite": "Thiessen (2012)\n",
"doi": "https://psycnet.apa.org/doi/10.1080/15475441.2011.583610\n",
"peerReviewed": true
},
{
"shortCite": "Bulf et al (2015)\n",
"doi": "https://doi.org/10.3389/fpsyg.2015.01595\n",
"peerReviewed": true
},
{
"shortCite": "Frank et al (2009)\n",
"doi": "https://psycnet.apa.org/doi/10.1111/j.1467-7687.2008.00794.x\n",
"peerReviewed": true
},
{
"shortCite": "Ferguson & Lew-Williams (2016)\n",
"doi": "https://doi.org/10.1038/srep25434\n",
"peerReviewed": true
},
{
"shortCite": "Tsui et al (2016)\n",
"doi": "https://doi.org/10.1111/desc.12319\n",
"peerReviewed": true
},
{
"shortCite": "Rabagliati et al (2012)\n",
"doi": "https://doi.org/10.1371/journal.pone.0040517\n",
"peerReviewed": true
},
{
"shortCite": "Marcus et al (2007)\n",
"doi": "https://psycnet.apa.org/doi/10.1111/j.1467-9280.2007.01910.x\n",
"peerReviewed": true
},
{
"shortCite": "Johnson et al (2009)\n",
"doi": "https://doi.org/10.1080/15250000802569611\n",
"peerReviewed": true
},
{
"shortCite": "Marcus et al (1999)\n",
"doi": "https://doi.org/10.1126/science.283.5398.77\n",
"peerReviewed": true
},
{
"shortCite": "Gerken et al (2015)\n",
"doi": "https://doi.org/10.1111/desc.12183\n",
"peerReviewed": true
},
{
"shortCite": "Gerken (2006)\n",
"doi": "https://psycnet.apa.org/doi/10.1016/j.cognition.2005.03.003\n",
"peerReviewed": true
},
{
"shortCite": "Gerken (2010)\n",
"doi": "https://psycnet.apa.org/doi/10.1016/j.cognition.2010.01.006\n",
"peerReviewed": true
},
{
"shortCite": "Pons & Toro (2010)\n",
"doi": "https://psycnet.apa.org/doi/10.1016/j.cognition.2010.05.013\n",
"peerReviewed": true
},
{
"shortCite": "Ferguson & Waxman (2016)\n",
"doi": "https://groups.psych.northwestern.edu/waxman/documents/FergusonWaxman2015CSS.pdf\n",
"peerReviewed": true
},
{
"shortCite": "Gervain & Werker (2013)\n",
"doi": "https://doi.org/10.1017/s0305000912000256\n",
"peerReviewed": true
},
{
"shortCite": "Bahlmann & Levelt (2016)\n",
"doi": "",
"peerReviewed": false
},
{
"shortCite": "Leeuven & Levelt (2016)\n",
"doi": "",
"peerReviewed": false
},
{
"shortCite": "Bulf et al (2017)\n",
"doi": "https://doi.org/10.1038/s41598-017-02466-w\n",
"peerReviewed": true
}
]
}
Loading

0 comments on commit 5371af0

Please sign in to comment.