Use google BERT to do CoNLL-2003 NER !
python3
pip3 install -r requirements.txt
python run_ner.py --data_dir=data/ --bert_model=bert-base-cased --task_name=ner --output_dir=out_!x --max_seq_length=128 --do_train --num_train_epochs 5 --do_eval --warmup_proportion=0.4
precision recall f1-score support
PER 0.9687 0.9756 0.9721 1842
ORG 0.9299 0.9292 0.9295 1341
MISC 0.8878 0.9100 0.8988 922
LOC 0.9674 0.9701 0.9687 1837
avg / total 0.9470 0.9532 0.9501 5942
precision recall f1-score support
ORG 0.8754 0.9055 0.8902 1661
PER 0.9663 0.9573 0.9618 1617
MISC 0.7803 0.8348 0.8066 702
LOC 0.9271 0.9305 0.9288 1668
avg / total 0.9049 0.9189 0.9117 5648
Pretrained model download from here
from bert import Ner
model = Ner("out_!x/")
output = model.predict("Steve went to Paris")
print(output)
# ('Steve', {'tag': 'B-PER', 'confidence': 0.9981840252876282})
# ('went', {'tag': 'O', 'confidence': 0.9998939037322998})
# ('to', {'tag': 'O', 'confidence': 0.999891996383667})
# ('Paris', {'tag': 'B-LOC', 'confidence': 0.9991968274116516})