Reading list on deep learning.
- SSL: Thang Luong. "Learning from Unlabeled Data".
-
Geometric Primitives: Shaobo Xia et al."Geometric Primitives in LiDAR Point Clouds: A Review"
-
Surface Reconstrcution: Matthew Berger et al."A Survey of Surface Reconstruction from Point Clouds". CGF 2016
-
3D Survey: Ying Li et al. "Deep Learning for LiDAR Point Clouds in Autonomous Driving: A Review" arXiv:2005.09830 (Waterloo)
-
3D Survey: Yulan Guo, et al. "Deep Learning for 3D Point Clouds: A Survey" arXiv:1912.12033 (NUDT)
-
I2I Survey: Yingxue Pang et al. "Image-to-Image Translation: Methods and Applications" arXiv 2101.08629 (USTC)
-
GAN Survey: Zhengwei Wang et al. "Generative Adversarial Networks in Computer Vision: A Survey and Taxonomy" ACM Computing Surveys 2020 (Trinity College Dublin)
-
GAN Survey: Abdul Jabbar et al. "A Survey on Generative Adversarial Networks:Variants, Applications, and Training". 2020 (ZJU)
-
ViT Survey: Kai Han et al. "A Survey on Visual Transformer" arXiv 2012.12556 (Noah)
-
ViT Survey: Salman Khan et al. "Transformers in Vision: A Survey" arXiv 2101.01169 (MBZ)
-
PointMixup: Yunlu Chen et al. "PointMixup: Augmentation for Point Clouds" In ECCV 2020 (University of Amsterdam)
-
Embedding Expansion: Byungsoo Ko et al. "Embedding Expansion: Augmentation in Embedding Space for Deep Metric Learning" In CVPR 2020 (NAVER)
-
BALMS: Jiawei Ren et al."Balanced Meta-Softmax for Long-Tailed Visual Recognition" In NIPS 2020 (NTU)
- dMaSIF: Freyr Sverrisson et al."Fast End-to-End Learning on Protein Surfaces". CVPR 2021 (EPFL)
-
VSL: Shikun Liu et al."Learning a Hierarchical Latent-Variable Model of 3D Shapes" 3DV 2018 (ICL)
-
IMLSNet: Shi-Lin Liu et al."Deep Implicit Moving Least-Squares Functions for 3D Reconstruction" CVPR 2021 (MSRA)
-
GeoNet: Tong He et al."GeoNet: Deep Geodesic Networks for Point Cloud Analysis" CVPR 2019 (UCLA)
-
Spare-Net: Chulin Xie et al. "Style-based Point Generator with Adversarial Rendering for Point Cloud Completion". CVPR 2021 (UIUC)
-
GPDNet: Pistilli, Francesca et al. "Learning Graph-Convolutional Representationsfor Point Cloud Denoising". ECCV 2020 (Politecnico di Torino, Italy)
-
DMRDenoise: Luo, Shitong et al. "Differentiable Manifold Reconstruction for Point Cloud Denoising". ACMMM 2021 (PKU)
-
Rethinking Sampling: He Wang et al. "Rethinking Sampling in 3D Point Cloud Generative Adversarial Networks" arXiv:2006.07029 (Standford)
-
UDS: Yi Shi et al. "Unsupervised Deep Shape Descriptor with Point Distribution Learning" In CVPR 2020 (NYU)
-
MS-cGAN: Rundi Wu et al. "Multimodal Shape Completion via Conditional Generative Adversarial Networks" In ECCV 2020 (PKU)
-
LG-GAN: Hang Zhou et al. "LG-GAN: Label Guided Adversarial Network for Flexible Targeted Attack of Point Cloud Based Deep Networks" In CVPR 2020 (USTC)
-
DUP-Net: Hang Zhou et al. "DUP-Net: Denoiser and Upsampler Network for 3D Adversarial Point Clouds Defense" In ICCV 2019 (USTC)
-
GvG-P: Xiaoyi Dong et al. "Self-Robust 3D Point Recognition via Gather-Vector Guidance" In CVPR 2020 (USTC)
-
PosPool: Ze Liu et al."A Closer Look at Local Aggregation Operators in Point Cloud Analysis" ECCV 2020 (NSTC)
-
PointNL: Mingmei Cheng et al. " Cascaded Non-local Neural Network for Point Cloud Semantic Segmentation " IROS 2020 (NUST)
-
PointContrast: Saining Xie et al. "PointContrast: Unsupervised Pre-training for 3D Point Cloud Understanding" ECCV 2020 (FAIR)
-
SVCN: Li Yi et al. "Complete & Label: A Domain Adaptation Approach to Semantic Segmentation of LiDAR Point Clouds". arXiv 2007 (Google)
-
PDGN: Le Hui et al. "Progressive Point Cloud Deconvolution Generation Network". ECCV 2020 (NJUST)
-
ACNe: Weiwei Sun et al. "ACNe: Attentive Context Normalization for Robust Permutation-Equivariant Learning". CVPR 2020 (University of Victoria)
-
Spatial Transformer: Jiayun Wang et al. "Spatial Transformer for 3D Point Clouds" arXiv:1906.10887 (UC Berkeley)
-
MOPS-Net: Yue Qian et al. "MOPS-Net: A Matrix Optimization-driven Network for Task-Oriented 3D Point Cloud Downsampling" arXiv:2005.00383 (CityU)
-
C-Flow: Albert Pumarola et al. "C-Flow: Conditional Generative Flow Models for Images and 3D Point Clouds". In CVPR 2020 (Google)
-
PointGMM: Amir Hertz et al. "PointGMM: a Neural GMM Network for Point Clouds". In CVPR 2020 (TAU)
-
GLR: Yongming Rao et al. "Global-Local Bidirectional Reasoning for Unsupervised Representation Learning of 3D Point Clouds". In CVPR 2020 (THU)
-
Grid-GCN: Qiangeng Xu et al. "Grid-GCN for Fast and Scalable Point Cloud Learning". In CVPR 2020 (USC)
-
TreeGAN: Dong Wook Shu et al. "3D Point Cloud Generative Adversarial Network Based on Tree Structured Graph Convolutions". In ICCV 2019 (CAU)
-
SA-Net: Xin Wen et al. "Point Cloud Completion by Skip-attention Network with Hierarchical Folding". arXiv:2005.03871 (THU)
-
Cascaded: Xiaogang Wang et al. "Cascaded Refinement Network for Point Cloud Completion". In CVPR 2020 (NUS)
-
PF-Net: Zitian Huang, et al. "PF-Net: Point Fractal Network for 3D Point Cloud Completion" In CVPR 2020 (SJTU)
-
FPConv: Yiqun Lin et al. "FPConv: Learning Local Flattening for Point Convolution". In CVPR 2020 (CHKU SZ)
-
3DStructurePoints: Nenglun Chen et al. "Unsupervised Learning of Intrinsic Structural Representation Points". In CVPR 2020 (HKU)
-
DPDist: Dahlia Urbach et al. "DPDist:Comparing Point Clouds Using Deep Point Cloud Distance" arXiv:2004.11784
-
Mesh R-CNN: Georgia Gkioxari et al. "Mesh R-CNN." In ICCV 2019
-
TMNet: Junyi Pan et al. "Deep Mesh Reconstruction from Single RGB Images via Topology Modification Networks." In ICCV 2019
-
Pixel2Mesh++: Chao Wen et al. "Pixel2Mesh++: Multi-View 3D Mesh Generation via Deformation." In ICCV 2019
-
Pixel2Mesh: Nanyang Wang et al. "Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images." In ECCV 2018
-
Scan2Mesh: Angela Dai, et al. "Scan2Mesh: From Unstructured Range Scans to 3D Meshes" In ICCV 2019
-
PointGroup: Jiang Li, et al. "PointGroup: Dual-Set Point Grouping for 3D Instance Segmentation" In CVPR2020
-
DetDA: Martin Hahner, et al. "Quantifying Data Augmentation for LiDAR based 3D Object Detection" arXiv:2004.01643
-
DCM-Net: Jonas Schult, et al. "DualConvMesh-Net: Joint Geodesic and Euclidean Convolutions on 3D Meshes" In CVPR2020
-
PCRNet: Vinit Sarode, et al. "PCRNet: Point Cloud Registration Network using PointNet Encoding" arXiv:1908.07906.
-
PointNetLK: Yasuhiro Aoki, et al. "PointNetLK: Robust & Efficient Point Cloud Registration using PointNet" In 2019 CVPR
-
DPAM: Jinxian Liu, et al. "Dynamic Points Agglomeration for Hierarchical Point Sets Learning" In 2019 ICCV
-
PointNet: Charles R. Qi, et al. "PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation" In 2017 CVPR
-
PointNet++: Charles R. Qi, et al. "PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space" In 2017 NIPS
-
FrustumNet: Charles R. Qi, et al. "Frustum PointNets for 3D Object Detection from RGB-D Data" In 2018 CVPR
-
3D-GAN: Jiajun Wu, et al."Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling" In 2016 NIPS
-
IW-GAN:Edward J. Smith, et al. "Improved Adversarial Systems for 3D Object Generation and Reconstruction" arXiv:1707.09557.
-
RecGAN: Bo Yang, et al. "3D Object Reconstruction from a Single Depth View with Adversarial Learning" In 2017 ICCV workshop
-
GAL: Jiang Li, et al. "GAL: Geometric Adversarial Loss for Single-View 3D-Object Reconstruction" In 2018 ECCV
-
PSGN: Haoqiang Fan, et al."A Point Set Generation Network for 3D Object Reconstruction from a Single Image" In 2017 CVPR
-
PCN: Wentao Yuan, et al. "PCN: Point Completion Network." In 2018 3DV
-
Dense Rec: Chen-Hsuan Lin, et al."Learning Efficient Point Cloud Generation for Dense 3D Object Reconstruction" In 2018 AAAI
-
Point Cloud GAN: Chun-Liang Li, et al. "Point Cloud GAN" arXiv:1810.05795.
-
PCPNet: Paul Guerrero, et al. "PCPNET: Learning Local Shape Properties from Raw Point Clouds" In 2018 EG
-
LRGM: Panos Achlioptas, et al."Learning Representations and Generative Models for 3D Point Clouds" In 2018 ICLR workshop
-
P2PNet: KANGXUE YIN, et al."P2P-NET: Bidirectional Point Displacement Net for Shape Transform" In 2018 Siggraph
-
POINTCLEANNET: Marie-Julie Rakotosaona, et al. "POINTCLEANNET: Learning to Denoise and Remove Outliers from Dense Point Clouds" arXiv: 1901.01060
-
PPFNet: Haowen Deng, et al. "PPFNet: Global Context Aware Local Features for Robust 3D Point Matching" In 2018 CVPR
-
PPF-FoldNet: Haowen Deng, et al. "PPF-FoldNet: Unsupervised Learnning of Rotation Invariant 3D Local Descriptors" In 2018 ECCV
-
PPPU: Wang Yifan, et al. "Patch-based Progressive 3D Point Set Upsampling " In 2019 CVPR
-
L2S: Oren Dovrat, et al. "Learning to Sample" In 2019 CVPR
-
PCC: Xuelin Chen, et al. "Unpaired Point Cloud Completion on Real Scans using Adversarial Training" arXiv:1904.00069
-
PointConv: Wenxuan Wu, et al. "PointConv: Deep Convolutional Networks on 3D Point Clouds". In 2019 CVPR
-
PointCNN: Yangyan Li, et al. "PointCNN: Convolution On X-Transformed Points". In 2018 NIPS
-
PointWeb: Hengshuang Zhao, et al. "PointWeb: Enhancing Local Neighborhood Features for Point Cloud Processing" In 2019 CVPR
-
Point-Capsule: Yongheng Zhao, et al. "3D Point-Capsule Networks" arXiv:1812.10775
-
CPL: Ehsan Nezhadarya, et al. "Adaptive Hierarchical Down-Sampling for Point Cloud Classification" arXiv:1904.08506
-
PCAN: Wenxiao Zhang, et al. "PCAN: 3D Attention Map Learning Using Contextual Information for Point Cloud Based Retrieval" In 2019 CVPR
-
PN_VLAD: Mikaela Angelina Uy, et al. "PointNetVLAD: Deep Point Cloud Based Retrieval for Large-Scale Place Recognition" In 2018 CVPR
-
RS-CNN: Yongcheng Liu, et al. "Relation-Shape Convolutional Neural Network for Point Cloud Analysis" In 2019 CVPR
-
GPC: Chong Xiang, et al. "Generating 3D Adversarial Point Clouds" In 2019 CVPR
-
SO-NET: Jiaxin Li, et al. "SO-Net: Self-Organizing Network for Point Cloud Analysis" In 2018 CVPR
-
PU-Net: Lequan Yu, et al. "PU-Net: Point Cloud Upsampling Network" In 2018 CVPR
-
EC-Net: Lequan Yu, et al. "EC-Net: an Edge-aware Point set Consolidation Network" In 2018 ECCV
-
LSGC: Chu Wang, et al. "Local Spectral Graph Convolution for Point Set Feature Learning" In 2018 ECCV
-
Gconv: Diego Valsesia, et al. " Learning Localized Generative Models for 3D Point Clouds via Graph Convolution" In 2019 ICLR
-
Scan2Mesh: Angela Dai, et al. "Scan2Mesh: From Unstructured Range Scans to 3D Meshes." In 2019 CVPR
-
ContrastNet: Ling Zhang, et al. "Unsupervised Feature Learning for Point Cloud by Contrasting and Clustering With Graph Convolutional Neural Network" arXiv:1904.12359
-
VoteNet: Charles R. Qi, et al. "Deep Hough Voting for 3D Object Detection in Point Clouds" In ICCV 2019
-
StructureNet: Zhidong Liang, et al. "3D Graph Embedding Learning with a Structure-aware Loss Function for Point Cloud Semantic Instance Segmentation" arXiv:1902.05247
-
DeepGCN: Guohao Li, et al. "Can GCNs Go as Deep as CNNs?" arXiv:1904.03751
-
RGCNN: Gusi Te, et al. "RGCNN: Regularized Graph CNN for Point Cloud Segmentation" In 2018 ACM MM
-
SRN: Yueqi Duan, et al. "Structural Relational Reasoning of Point Clouds" In 2019 CVPR
-
Tree-GAN: Dong Wook Shu, et al. "3D Point Cloud Generative Adversarial Network Based on Tree Structured Graph Convolutions" arXiv:1905.06292
-
KPConv: Hugues Thomas, et al. “KPConv: Flexible and Deformable Convolution for Point Clouds” In ICCV 2019
-
PointWise:Matan Shoef, et al. "PointWise: An Unsupervised Point-wise Feature Learning Network" arXiv:1901.04544
-
GAPNet: Can Chen, et al. "GAPNet: Graph Attention based Point Neural Network for Exploiting Local Feature of Point Cloud" arXiv:1905.08705
-
GACNet: Lei Wang, et al. "Graph Attention Convolution for Point Cloud Segmentation" In CVPR 2019
-
DensePCR: Priyanka Mandikal, et al. "Dense 3D Point Cloud Reconstruction Using a Deep Pyramid Network" arXiv:1901.08906
-
G-NPC: Xianzhi Li, et al. "Non-Local Low-Rank Normal Filtering for Mesh Denoising" In 2018 PG
-
AGCN: Zhuyang Xie, et al. "Point Clouds Learning with Attention-based Graph Convolution Networks" arXiv: 1905.13445
-
MeshNet: Yutong Feng, et al. "MeshNet: Mesh Neural Network for 3D Shape Representation" arXiv: 1811.11424
-
TopNet: Lyne P. Tchapmi et al."TopNet: Structural Point Cloud Decoder." In CVPR 2019
-
Nesti-Net: Yizhak Ben-Shabat et al."Nesti-Net: Normal Estimation for Unstructured 3D Point Clouds using Convolutional Neural Networks." In CVPR 2019
-
LOGAN: Kangxue Yin et al."LOGAN: Unpaired Shape Transform in Latent Overcomplete Space." In Siggraph Asia 2019
-
PointFlow: Guandao Yang et al. "PointFlow : 3D Point Cloud Generation with Continuous Normalizing Flow" In ICCV 2019
-
InterpCNN: Jiageng Mao et al. "Interpolated Convolutional Networks for 3D Point Cloud Understanding" In ICCV 2019
-
Point-Edge: Li Jiang et al. "Hierarchical Point-Edge Interaction Network for Point Cloud Semantic Segmentation" In ICCV 2019
-
RI-Conv: Zhiyuan Zhang et al. "Rotation Invariant Convolutions for 3D Point Clouds Deep Learning" In CVPR 2019
-
Shape Unicode: Sanjeev Muralikrishnan et al. "Shape Unicode: A Unified Shape Representation" In CVPR 2019
-
BPS: Sergey Prokudin et al. "Efficient Learning on Point Clouds with Basis Point Sets." In ICCV 2019
-
ShellNet: Zhiyuan Zhang et al. "ShellNet: Efficient Point Cloud Convolutional Neural Networks using Concentric Shells Statistics." In ICCV 2019
-
SS-NET: Jonathan Sauder et al."Self-Supervised Deep Learning on Point Clouds by Reconstructing Space." In NIPS 2019
-
Attentional EdgeConv: Qiu Shi et al."Geometric Feedback Network for Point Cloud Classification." arXiv preprint arXiv:1911.12885 (2019).
-
Morphing-Net: Minghua Liu et al."Morphing and Sampling Network for Dense Point Cloud Completion." In AAAI 2020
-
PCC-GAN: Xuelin Chen et al."Unpaired Point Cloud Completion on Real Scans using Adversarial Training." In ICML 2019.
-
Point2Node: Wenkai Han et al."Point2Node: Correlation Learning of Dynamic-Node for Point Cloud Feature Modeling." arXiv preprint arXiv:1912.10775 (2019).
-
GS-Net: Mingye Xu et al."Geometry Sharing Network for 3D Point Cloud Classification and Segmentation." In AAAI 2020.
-
IMCL:Dat el al. Interactive Multi-Label CNN Learning with Partial Labels. CVPR 2020.
-
PISE:Jinsong Zhang et al. "PISE: Person Image Synthesis and Editing with Decoupled GAN" Tianjin University. CVPR 20201
-
Im2Vec:Pradyumna Reddy et al. "Im2Vec: Synthesizing Vector Graphics without Vector Supervision" UCL. CVPR 20201
-
Infinite Nature:Andrew Liu et al. "Infinite Nature: Perpetual View Generation of Natural Scenes from a Single Image" Google. arxiv 2021
-
AniGAN:Bing Li et al. " AniGAN: Style-Guided Generative Adversarial Networks for Unsupervised Anime Face Generation" KAUST. arxiv 2021
-
CS-DisMo:Xuanchi Ren et al. "Rethinking Content and Style: Exploring Bias for Unsupervised Disentanglemen" HKUST. arxiv 2021
-
DSA: Bo Zhao et al. "Dataset Condensation with Differentiable Siamese Augmentation". University of Edinburgh. ICML 2021
-
DiffAug: Shengyu Zhao et al. "Differentiable Augmentation for Data-Efficient GAN Training". THU. 2020 NIPS
-
Deformable DETR: Xizhou Zhu et al."Deformable DETR: Deformable Transformers for End-to-End Object Detection". SenseTime. 2021 ICLR.
-
TransGAN: Yifan Jiang et al. "TransGAN: Two Transformers Can Make One Strong GAN". Texas University. 2021 ICML.
-
ViT: Alexey, Dosovitskiy et al. "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale". Google Brain. 2021 ICLR.
-
iGPT: Alec Radford, et al. "Generative Pretraining From Pixels". OpenAI. 2020 ICML.
-
OASIS: Edgar Schonfeld, et al. "You Only Need Adversarial Supervision for Semantic Image Synthesis." BOSCH. 2021 ICLR.
-
U-Net GAN: Edgar Schonfeld, et al. "A U-Net Based Discriminator for Generative Adversarial Networks." BOSCH. 2020 CVPR.
-
GauGAN/SPADE: Taesung Park, et al."Semantic Image Synthesis with Spatially-Adaptive Normalization" NVIDIA. 2019 CVPR.
-
BigGAN: Andrew Brock, et al. "Large Scale GAN Training for High Fidelity Natural Image Synthesis" DeepMind. ICLR 2019
-
Few-Shot StyleGAN: Tero Karras, et al. "Training generative adversarial networks with limited data." NVIDIA. arXiv:2006.06676.
-
Semi-StyleGAN: Tero Karras, et al. "Semi-Supervised StyleGAN for Disentanglement Learning." NVIDIA. 2020 ICML.
-
StyleGAN2: Tero Karras, et al. "Analyzing and Improving the Image Quality of StyleGAN." NVIDIA. 2020 CVPR.
-
StyleGAN: Tero Karras , et al. "A Style-Based Generator Architecture for Generative Adversarial Networks ." NVIDIA. 2019 CVPR.
-
Tangent Images: Marc Eder et al. "Tangent Images for Mitigating Spherical Distortion" CVPR 2020 (UNC)
-
iSeeBetter: Aman Chadha et al. "iSeeBetter: Spatio-temporal video super-resolution using recurrent generative back-projection networks" (Standford)
-
Triplet Attention: Diganta Misra et al. "Rotate to Attend: Convolutional Triplet Attention Module" arXiv 2010.03045(Landskape)
-
SSN: Wenqi Shao et al. "SSN: Learning Sparse Switchable Normalization via SparsestMax" CVPR 2019 (CUHK)
-
SAOL: Ildoo Kim et al. "Spatially Attentive Output Layer for Image Classification" CVPR 2020 (Kakao Brain)
-
IOFPL: Markus Hofinger et al. "Improving Optical Flow on a Pyramid Level" ECCV 2020 (Facebook)
-
RAFT: Zachary Teed et al. "RAFT: Recurrent All-Pairs Field Transforms for Optical Flow" ECCV 2020 (Princeton University)
-
Shape Adaptor: Shikun Liu et al."Shape Adaptor: A Learnable Resizing Module". ECCV 2020 (Imperial College London)
-
FONTS: David Stutz et al."Disentangling Adversarial Robustness and Generalization" CVPR2019(University of Tubingen)
-
TI-FGSM: Yinpeng Dong et al."Evading Defenses to Transferable Adversarial Examples by Translation-Invariant Attacks" CVPR2019(THU)
-
CUT: Taesung Park et al."Contrastive Learning for Unpaired Image-to-Image Translation" ECCV2020(UCB)
-
GAN Prior: Jinjin Gu et al. "Image Processing Using Multi-Code GAN Prior". CVPR2020(CUHK)
-
PriorGAN: Shuyang Gu et al. "PriorGAN: Real Data Prior for Generative Adversarial Nets". arXiv 2006.16990 (USTC)
-
PULSE: Sachit Menon et al. "PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models". CVPR2020(Duke)
-
Relation-Net: Han Hu et al. "Relation networks for object detection". CVPR 2018(MSRA)
-
Stand-Alone: Prajit Ramachandran et al. "Stand-Alone Self-Attention in Vision Models" In NIPS 2019 (Google)
-
AA-Net: Irwan Bello et al. "Attention Augmented Convolutional Networks" In ICCV 2019 (Google)
-
ISRN: Yuqing Liu et al. "Iterative Network for Image Super-Resolution" arXiv: 2005.09964 (DLUT)
-
VAE+Flow: Xuezhe Ma1 et al. "Decoupling Global and Local Representations from/for Image Generation" arXiv: 2004.11820
-
SAOL: Ildoo Kim et al. “Spatially Attentive Output Layer for Image Classification." In CVPR 2020
-
Circle Loss: Yifan Sun et al."Circle Loss: A Unified Perspective of Pair Similarity Optimization." In CVPR 2020
-
DeepSnake: Sida Peng et al."Deep Snake for Real-Time Instance Segmentation." In CVPR 2020
-
DRN: Guo, Yong, et al. "Closed-loop Matters: Dual Regression Networks for Single Image Super-Resolution." In CVPR 2020.
-
MSG-GAN: Animesh Karnewar, et al. "MSG-GAN: Multi-Scale Gradients for Generative Adversarial Networks." In CVPR 2020.
-
StructuredGAN: Irad Peleg, et al. "Structured GANs." arXiv:2001.05216.
-
GAN: Goodfellow, Ian, et al. "Generative adversarial nets." In 2014 NIPS .
-
cGAN: Mirza, Mehdi, and Simon Osindero. "Conditional generative adversarial nets." arXiv preprint arXiv:1411.1784 (2014).
-
S2-GAN: Xiaolong Wang, et al. "Generative Image Modeling using Style and Structure Adversarial Networks." In 2016 ECCV
-
DCGAN: Radford, et al.. "Unsupervised representation learning with deep convolutional generative adversarial networks." In 2016 ICLR
-
Pixel2Pixel: Isola, Phillip, et al. "Image-to-image translation with conditional adversarial networks." In 2017 CVPR
-
SRGAN: Christian,Ledig, et al. "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network." In 2017 CVPR.
-
AdaIN: Xun Huang , et al. "Arbitrary Style Transfer in Real-time with Adaptive Instance Normalization ." In 2017 ICCV
-
CycleGAN:Zhu, Jun-Yan, et al. "Unpaired image-to-image translation using cycle-consistent adversarial networks." In 2017 ICCV.
-
BicycleGAN:Zhu, Jun-Yan, et al. "Toward Multimodal Image-to-Image Translation." In 2017 NIPS.
-
Least square loss :Xudong, Mao , et al. "Least Squares Generative Adversarial Networks ." In 2017 ICCV.
-
StackGAN: Han Zhang, et al. "StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks ." In 2017 ICCV.
-
StackGAN++: Han Zhang, et al. "StackGAN++: Realistic Image Synthesis with Stacked Generative Adversarial Networks ." In 2018 TPAMI.
-
TTUR: Martin Heusel, et al. "GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium ." In 2017 NIPS.
-
SGAN: Xun Huang , et al. "Stacked Generative Adversarial Networks ." In 2017 CVPR.
-
StarGAN: Choi, Yunjey, et al. "Stargan: Unified generative adversarial networks for multi-domain image-to-image translation." In CVPR 2018.
-
DISSECTIONGAN: Zhu, Jun-Yan, et al. "GAN DISSECTION: VISUALIZING AND UNDERSTANDING GENERATIVE ADVERSARIAL NETWORKS ." arXiv:1811.10597.
-
GDWTC: Wonwoong Cho, et al. "Image-to-Image Translation via Group-wise Deep Whitening and Coloring Transformation" arXiv:1812.09912.
-
Latent Filter GAN: Yazeed Alharbi, et al."Latent Filter Scaling for Multimodal Unsupervised Image-to-Image Translation." In CVPR 2019.
-
CariGAN: KAIDI CAO, et al. "CariGANs: Unpaired Photo-to-Caricature Translation." In 2018 Siggraph.
-
AttnGAN: Tao Xu, et al. "AttnGAN: Fine-Grained Text to Image Generation with Attentional Generative Adversarial Networks." In 2018 CVPR
-
Pixel2PixelHD: Ting-Chun Wang, et al. "High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs." In 2018 CVPR
-
Attention-GAN: Xinyuan Chen, et al. "Attention-GAN for Object Transfiguration in Wild Images." In 2018 ECCV
-
DRIT: Hsin-Ying Lee, et al. "Diverse Image-to-Image Translation via Disentangled Representations." In 2018 ECCV
-
Contextual GAN: Yongyi Lu, et al. "Image Generation from Sketch Constraint Using Contextual GAN." In 2018 ECCV
-
MUINT: Xun Huang, et al. "Multimodal Unsupervised Image-to-Image Translation" In 2018 ECCV
-
Recycle-GAN: Aayush Bansal , et al. "Recycle-GAN: Unsupervised Video Retargeting" In 2018 ECCV
-
Sub-GAN: Jie Liang, et al."Sub-GAN: An Unsupervised Generative Model via Subspaces" In 2018 ECCV
-
Stack CycleGAN:Minjun Li, et al. "Unsupervised Image-to-Image Translation with Stacked Cycle-Consistent Adversarial Networks " In 2018 ECCV
-
Progressive GAN: Tero Karras , et al."PROGRESSIVE GROWING OF GANS FOR IMPROVED QUALITY, STABILITY, AND VARIATION" In 2018 ICLR
-
SAGAN: Han Zhang, et al. "Self-Attention Generative Adversarial Networks" In 2018 ICLR
-
SN: Takeru Miyato, et al. "SPECTRAL NORMALIZATION FOR GENERATIVE ADVERSARIAL NETWORKS " In 2018 ICLR
-
Augmented CycleGAN: Amjad Almahairi , et al. "Augmented CycleGAN: Learning Many-to-Many Mappings from Unpaired Data" In 2018 ICML
-
BigGAN: Andrew Brock, et al."LARGE SCALE GAN TRAINING FOR HIGH FIDELITY NATURAL IMAGE SYNTHESIS " In ICLR 2019
-
InstaGAN: Sangwoo Mo, et al. "INSTANCE-AWARE IMAGE-TO-IMAGE TRANSLATION " In 2019 ICLR
-
RGAN: Alexia Jolicoeur-Martineau, et al. "The relativistic discriminator: a key element missing from standard GAN" In 2019 ICLR
-
Pixel-Shuffer: Wenzhe Shi, et al. "Real-Time Single Image and Video Super-Resolution Using an Efficient Sub-Pixel Convolutional Neural Network" In CVPR 2016
-
Degradation GAN: Adrian Bulat et al."To learn image super-resolution, use a GAN to learn how to do image degradation first." In ECCV 2018
-
DANet: Jun Fu et al. "Dual Attention Network for Scene Segmentation." In CVPR 2019
-
FineGAN: Krishna Kumar Singh et al. "FineGAN: Unsupervised Hierarchical Disentanglement for Fine-Grained Object Generation and Discovery." In CVPR 2019
-
TransGaGa: Wayne Wu et al. "TransGaGa: Geometry-Aware Unsupervised Image-to-Image Translation." In CVPR 2019
-
Deblur-GAN: Boyu Lu et al. "Unsupervised Domain-Specific Deblurring via Disentangled Representations." In CVPR 2019
-
NoiseFlow: Abdelrahman Abdelhamed et al. "Noise Flow: Noise Modeling with Conditional Normalizing Flows." arXiv:1908.08453
-
DMIT: Xiaoming Yu et al. "Multi-mapping Image-to-Image Translation via Learning Disentanglement." In NIPS 2019
-
Stylized-ImageNet: Robert Geirhos et al. "ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness." In ICLR 2019
-
InvertGray: Xia, Menghan et al. "Invertible grayscale." In SIGGRAPH Asia 2018
-
DegradeSR: Bulat, Adrian et al. "To learn image super-resolution, use a GAN to learn how to do image degradation first." In ECCV 2018
-
EfficientDet: Tan, Mingxing et al. "EfficientDet: Scalable and Efficient Object Detection." arXiv: 1911.09070
-
STDL: Peng Zhou et al. "Scale-Transferrable Object Detection." In CVPR 2018.
-
DARTS: Hanxiao Liu et al. "DARTS: DIFFERENTIABLE ARCHITECTURE SEARCH." In ICLR 2019. (CMU)
- Peter W. Battaglia, et al. "Relational inductive biases, deep learning, and graph networks." arXiv: 1806.01261
- Multi Agent :"MULTI-AGENT DUAL LEARNING" In ICLR 2019