Skip to content

Commit

Permalink
Fix a bug where in original implementation (cira 2014) we assumed
Browse files Browse the repository at this point in the history
destination node is terminal no question asked. That assumption is
broken since then and we fixed various places hold that assumption and
break the program. However, this particular issue is that no destination
node will continue to propagate its dependencies, making memory
allocator conservative on which region can be reused (because it
receives incomplete dependency information).

The fix is simply to remove the shortcut. It should have minimal impact
on inference as during inference, very few nodes is the destination
node. It will require more RAM / time to do the allocation during
backward propagation time (because now it builds a more complete
dependency graph). But in return, it now acts much more aggressively for
memory reuse thus much less RAM during training.
  • Loading branch information
liuliu committed Mar 21, 2024
1 parent 5468f9e commit 00f1e8b
Show file tree
Hide file tree
Showing 3 changed files with 8 additions and 8 deletions.
2 changes: 1 addition & 1 deletion lib/nnc/ccv_nnc_symbolic_graph_compile.c
Original file line number Diff line number Diff line change
Expand Up @@ -2069,7 +2069,7 @@ static void _ccv_nnc_exec_dep_and_tensor_blocks_prep(const ccv_nnc_symbolic_grap
ccv_sparse_matrix_vector_t* vector = ccv_get_sparse_matrix_vector(exec_dep, idx);
if (vector)
CCV_SPARSE_VECTOR_FOREACH(exec_dep, vector, for_block);
if (!node->outgoings || term)
if (!node->outgoings)
continue;
for (i = 0; i < node->outgoings->rnum; i++)
{
Expand Down
8 changes: 4 additions & 4 deletions test/unit/nnc/autograd.tests.c
Original file line number Diff line number Diff line change
Expand Up @@ -34,7 +34,7 @@ TEST_CASE("simple autograd with D[x * x + Log[1 / x], x] when x = 0.84")
ccv_nnc_graph_exec_arena_t* graph_exec_arena = 0;
ccv_nnc_tensor_symbol_t dx = ccv_nnc_tensor_symbol_for_backward(symbolic_graph, x);
ccv_nnc_graph_exec_symbol_t dxc = ccv_nnc_graph_exec_symbol_for_backward(symbolic_graph, dx);
ccv_nnc_symbolic_graph_compile(symbolic_graph, ccv_nnc_default_compile_params, 0, 0, 0, 0, GRAPH_EXEC_SYMBOL_LIST(prod, inv), GRAPH_EXEC_SYMBOL_LIST(dxc, sum), &graph, &tensor_arena, &graph_exec_arena);
ccv_nnc_symbolic_graph_compile(symbolic_graph, ccv_nnc_default_compile_params, 0, 0, TENSOR_SYMBOL_LIST(z, dx), GRAPH_EXEC_SYMBOL_LIST(prod, inv), GRAPH_EXEC_SYMBOL_LIST(dxc, sum), &graph, &tensor_arena, &graph_exec_arena);
SYMBOLIC_GRAPH_GEN(symbolic_graph, CCV_NNC_LONG_DOT_GRAPH);
GRAPH_GEN(graph, CCV_NNC_LONG_DOT_GRAPH);
ccv_nnc_tensor_t* tone = ccv_nnc_tensor_from_symbol(tensor_arena, one);
Expand Down Expand Up @@ -70,7 +70,7 @@ TEST_CASE("autograd with D[y, x] when x = 10 and y = 1 (no x presence in the for
ccv_nnc_graph_exec_arena_t* graph_exec_arena = 0;
ccv_nnc_tensor_symbol_t dx = ccv_nnc_tensor_symbol_for_backward(symbolic_graph, x);
ccv_nnc_graph_exec_symbol_autogen(symbolic_graph, 0, 0, CCV_NNC_AUTOGEN_SOURCES_AND_DESTINATIONS);
ccv_nnc_symbolic_graph_compile(symbolic_graph, ccv_nnc_default_compile_params, 0, 0, 0, 0, ccv_nnc_symbolic_graph_sources(symbolic_graph), ccv_nnc_symbolic_graph_source_size(symbolic_graph), ccv_nnc_symbolic_graph_destinations(symbolic_graph), ccv_nnc_symbolic_graph_destination_size(symbolic_graph), &graph, &tensor_arena, &graph_exec_arena);
ccv_nnc_symbolic_graph_compile(symbolic_graph, ccv_nnc_default_compile_params, 0, 0, TENSOR_SYMBOL_LIST(dx), ccv_nnc_symbolic_graph_sources(symbolic_graph), ccv_nnc_symbolic_graph_source_size(symbolic_graph), ccv_nnc_symbolic_graph_destinations(symbolic_graph), ccv_nnc_symbolic_graph_destination_size(symbolic_graph), &graph, &tensor_arena, &graph_exec_arena);
GRAPH_GEN(graph, CCV_NNC_LONG_DOT_GRAPH);
ccv_nnc_tensor_t* tx = ccv_nnc_tensor_from_symbol(tensor_arena, x);
if (tx)
Expand Down Expand Up @@ -118,7 +118,7 @@ TEST_CASE("autograd with D[(x - y) * (x + 1), [x, y]] when x = 43.24 and y = 0.3
ccv_nnc_graph_exec_symbol_t dxc = ccv_nnc_graph_exec_symbol_for_backward(symbolic_graph, dx);
ccv_nnc_tensor_symbol_t dy = ccv_nnc_tensor_symbol_for_backward(symbolic_graph, y);
ccv_nnc_graph_exec_symbol_t dyc = ccv_nnc_graph_exec_symbol_for_backward(symbolic_graph, dy);
ccv_nnc_symbolic_graph_compile(symbolic_graph, ccv_nnc_default_compile_params, 0, 0, 0, 0, GRAPH_EXEC_SYMBOL_LIST(minus, plus), GRAPH_EXEC_SYMBOL_LIST(dxc, dyc, prod), &graph, &tensor_arena, &graph_exec_arena);
ccv_nnc_symbolic_graph_compile(symbolic_graph, ccv_nnc_default_compile_params, 0, 0, TENSOR_SYMBOL_LIST(v, dx, dy), GRAPH_EXEC_SYMBOL_LIST(minus, plus), GRAPH_EXEC_SYMBOL_LIST(dxc, dyc, prod), &graph, &tensor_arena, &graph_exec_arena);
SYMBOLIC_GRAPH_GEN(symbolic_graph, CCV_NNC_LONG_DOT_GRAPH);
GRAPH_GEN(graph, CCV_NNC_LONG_DOT_GRAPH);
ccv_nnc_tensor_t* tone = ccv_nnc_tensor_from_symbol(tensor_arena, one);
Expand Down Expand Up @@ -169,7 +169,7 @@ TEST_CASE("partial autograd with D[y * x + Log[1 / x], y] when x = 0.84 and y =
ccv_nnc_graph_exec_arena_t* graph_exec_arena = 0;
ccv_nnc_tensor_symbol_t dy = ccv_nnc_tensor_symbol_for_backward(symbolic_graph, y);
ccv_nnc_graph_exec_symbol_t dyc = ccv_nnc_graph_exec_symbol_for_backward(symbolic_graph, dy);
ccv_nnc_symbolic_graph_compile(symbolic_graph, ccv_nnc_default_compile_params, 0, 0, 0, 0, GRAPH_EXEC_SYMBOL_LIST(prod, inv), GRAPH_EXEC_SYMBOL_LIST(dyc, sum), &graph, &tensor_arena, &graph_exec_arena);
ccv_nnc_symbolic_graph_compile(symbolic_graph, ccv_nnc_default_compile_params, 0, 0, TENSOR_SYMBOL_LIST(z, dy), GRAPH_EXEC_SYMBOL_LIST(prod, inv), GRAPH_EXEC_SYMBOL_LIST(dyc, sum), &graph, &tensor_arena, &graph_exec_arena);
SYMBOLIC_GRAPH_GEN(symbolic_graph, CCV_NNC_LONG_DOT_GRAPH);
ccv_nnc_graph_set_default_static_schedule(graph, CCV_STREAM_CONTEXT_CPU, 0);
GRAPH_GEN(graph, CCV_NNC_LONG_DOT_GRAPH);
Expand Down
6 changes: 3 additions & 3 deletions test/unit/nnc/autograd.vector.tests.c
Original file line number Diff line number Diff line change
Expand Up @@ -39,7 +39,7 @@ TEST_CASE("autograd with D[y = x + [1 1.5] => x_1 + (y_1 + y_1 ^ 2) + Exp[y_2],
ccv_nnc_graph_exec_arena_t* graph_exec_arena = 0;
ccv_nnc_tensor_symbol_t dx = ccv_nnc_tensor_symbol_for_backward(symbolic_graph, x);
ccv_nnc_graph_exec_symbol_t dxc = ccv_nnc_graph_exec_symbol_for_backward(symbolic_graph, dx);
ccv_nnc_symbolic_graph_compile(symbolic_graph, ccv_nnc_default_compile_params, 0, 0, 0, 0, GRAPH_EXEC_SYMBOL_LIST(plus), GRAPH_EXEC_SYMBOL_LIST(dxc, sum), &graph, &tensor_arena, &graph_exec_arena);
ccv_nnc_symbolic_graph_compile(symbolic_graph, ccv_nnc_default_compile_params, 0, 0, TENSOR_SYMBOL_LIST(v, dx), GRAPH_EXEC_SYMBOL_LIST(plus), GRAPH_EXEC_SYMBOL_LIST(dxc, sum), &graph, &tensor_arena, &graph_exec_arena);
SYMBOLIC_GRAPH_GEN(symbolic_graph, CCV_NNC_LONG_DOT_GRAPH);
GRAPH_GEN(graph, CCV_NNC_LONG_DOT_GRAPH);
ccv_nnc_tensor_t* tone = ccv_nnc_tensor_from_symbol(tensor_arena, one);
Expand Down Expand Up @@ -92,7 +92,7 @@ TEST_CASE("autograd with D[y_1 = Log[x_1], y_2 = x_2 ^ 2 => y_1 ^ 2 + y_1 * y_2,
ccv_nnc_graph_exec_arena_t* graph_exec_arena = 0;
ccv_nnc_tensor_symbol_t dx = ccv_nnc_tensor_symbol_for_backward(symbolic_graph, x);
ccv_nnc_graph_exec_symbol_t dxc = ccv_nnc_graph_exec_symbol_for_backward(symbolic_graph, dx);
ccv_nnc_symbolic_graph_compile(symbolic_graph, ccv_nnc_default_compile_params, 0, 0, 0, 0, GRAPH_EXEC_SYMBOL_LIST(plus, x_1_sqr), GRAPH_EXEC_SYMBOL_LIST(dxc, sum), &graph, &tensor_arena, &graph_exec_arena);
ccv_nnc_symbolic_graph_compile(symbolic_graph, ccv_nnc_default_compile_params, 0, 0, TENSOR_SYMBOL_LIST(v, dx), GRAPH_EXEC_SYMBOL_LIST(plus, x_1_sqr), GRAPH_EXEC_SYMBOL_LIST(dxc, sum), &graph, &tensor_arena, &graph_exec_arena);
SYMBOLIC_GRAPH_GEN(symbolic_graph, CCV_NNC_LONG_DOT_GRAPH);
GRAPH_GEN(graph, CCV_NNC_LONG_DOT_GRAPH);
ccv_nnc_tensor_t* tx = ccv_nnc_tensor_from_symbol(tensor_arena, x);
Expand Down Expand Up @@ -136,7 +136,7 @@ TEST_CASE("autograd with D[y_1 = Log[x_1] => y_1 ^ 2 + y_1, x] when x = [0.21 -1
ccv_nnc_graph_exec_arena_t* graph_exec_arena = 0;
ccv_nnc_tensor_symbol_t dx = ccv_nnc_tensor_symbol_for_backward(symbolic_graph, x);
ccv_nnc_graph_exec_symbol_t dxc = ccv_nnc_graph_exec_symbol_for_backward(symbolic_graph, dx);
ccv_nnc_symbolic_graph_compile(symbolic_graph, ccv_nnc_default_compile_params, 0, 0, 0, 0, GRAPH_EXEC_SYMBOL_LIST(plus), GRAPH_EXEC_SYMBOL_LIST(dxc, sum), &graph, &tensor_arena, &graph_exec_arena);
ccv_nnc_symbolic_graph_compile(symbolic_graph, ccv_nnc_default_compile_params, 0, 0, TENSOR_SYMBOL_LIST(v, dx), GRAPH_EXEC_SYMBOL_LIST(plus), GRAPH_EXEC_SYMBOL_LIST(dxc, sum), &graph, &tensor_arena, &graph_exec_arena);
SYMBOLIC_GRAPH_GEN(symbolic_graph, CCV_NNC_LONG_DOT_GRAPH);
GRAPH_GEN(graph, CCV_NNC_LONG_DOT_GRAPH);
ccv_nnc_tensor_t* tx = ccv_nnc_tensor_from_symbol(tensor_arena, x);
Expand Down

0 comments on commit 00f1e8b

Please sign in to comment.