Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

DM-36211: Add PeekExposureTask #75

Merged
merged 1 commit into from
Feb 12, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions python/lsst/summit/utils/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -26,3 +26,4 @@
from .quickLook import *
from .butlerUtils import *
from .utils import *
from .peekExposure import *
275 changes: 275 additions & 0 deletions python/lsst/summit/utils/assessPeekExposure.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,275 @@
# This file is part of summit_utils.
#
# Developed for the LSST Data Management System.
# This product includes software developed by the LSST Project
# (https://www.lsst.org).
# See the COPYRIGHT file at the top-level directory of this distribution
# for details of code ownership.
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <https://www.gnu.org/licenses/>.


import atexit
from collections import namedtuple
import logging
import multiprocessing
import shutil
import time
import os
import warnings
from pathlib import Path

import lsst.afw.display as afwDisplay
import matplotlib.pyplot as plt
import numpy as np
from astropy.table import Table
from astropy.utils.exceptions import AstropyUserWarning
from lsst.afw.geom import ellipses
from lsst.daf.butler.datastore.cache_manager import DatastoreCacheManager
from lsst.summit.utils.bestEffort import BestEffortIsr
from lsst.summit.utils.peekExposure import PeekExposureTask
from tabulate import tabulate
from tqdm import tqdm

# Set logger level to higher than CRITICAL to suppress all output
silentLogger = logging.getLogger("silentLogger")
silentLogger.setLevel(logging.CRITICAL + 1)


# global vars for passing items from multiprocessing initializer to doWork.
AssessPeekExposureGlobals = namedtuple(
"AssessPeekExposureGlobals", ["bestEffort", "pet", "display", "fig", "ax"]
)


SIGMA_TO_FWHM = 2.0 * np.sqrt(2.0 * np.log(2.0))
AUXTEL_PIXEL_SCALE = 0.1 # arcsec/pixel


# get one BestEffortIsr,afwDisplay per subprocess
def initializePoolProcess():
"""Initialize the multiprocessing pool process.

Sets up some variables we only want to create once per process, including
the BestEffortIsr, and afwDisplay + associated matplotlib figure objects.

Places these into a global variable, as that's the only way I know of to
effectively pass these to the doWork function.
"""
global apeGlobals
fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(9, 9), facecolor="k")
display = afwDisplay.Display(fig, backend="matplotlib")
display.scale("asinh", -1, 31)
petConfig = PeekExposureTask.ConfigClass()
pet = PeekExposureTask(config=petConfig, log=silentLogger, display=display)
bestEffort = BestEffortIsr(embargo=True)
apeGlobals = AssessPeekExposureGlobals(bestEffort, pet, display, fig, ax)


# retrieve best-effort-isr and run PET on it
def doWork(idx, row, doPlot):
"""Run PeekExposureTask on a single exposure.

Parameters
----------
idx : `int`
Index of the exposure in the table.
row : `astropy.table.Row`
Row of the table containing the exposure metadata.
doPlot : `bool`
Whether to plot the results.

Returns
-------
inTag : `str`
Input tag of the exposure.
outTag : `str`
Output tag of the exposure.
runtime : `float`
Runtime of the exposure in seconds.
exposureId : `int`
Exposure ID of the exposure.
"""
global apeGlobals
bestEffort, pet, display, fig, ax = apeGlobals
exposureId = row["exposureId"]
dataId = {"instrument": "LATISS", "exposure": exposureId, "detector": 0}
exp = bestEffort.getExposure(dataId)
mode = "auto"
binSize = None
donutDiameter = None

# Until DM-41335 is fixed, we manually set mode for following exposures.
# Incorrectly labeled as photo
if exposureId >= 2022101200584 and exposureId <= 2022101200588:
mode = "donut"
donutDiameter = 1700
# Incorrectly labeled as giant donut
if exposureId >= 2022101200589 and exposureId <= 2022101200672:
mode = "photo"
if exposureId >= 2022101200673 and exposureId <= 2022101200676:
mode = "donut"
donutDiameter = 200
if exposureId >= 2022101200677 and exposureId <= 2022101200873:
mode = "photo"
if exposureId >= 2022101200874 and exposureId <= 2022101200875:
mode = "donut"
donutDiameter = 200
if exposureId >= 2022101200876 and exposureId <= 2022101201060:
mode = "photo"
if exposureId >= 2022101201061 and exposureId <= 2022101201062:
mode = "donut"
donutDiameter = 200
if exposureId >= 2022101201063 and exposureId <= 2022101201247:
mode = "photo"

t0 = time.time()
result = pet.run(
exp, mode=mode, doDisplay=doPlot, binSize=binSize, donutDiameter=donutDiameter
)
t1 = time.time()
runtime = t1 - t0

ax.text(
0.01,
0.97,
f"Runtime: {runtime:.2f} s",
c="w",
transform=ax.transAxes,
fontsize=12,
)

inTag = row["finalTag"]
trueX = row["centroid_x"]
trueY = row["centroid_y"]
foundX = result.brightestCentroid.x
foundY = result.brightestCentroid.y

if np.isfinite(trueX):
nx = (trueX - (result.binSize - 1) / 2) / result.binSize
ny = (trueY - (result.binSize - 1) / 2) / result.binSize
if doPlot:
display.dot("o", nx, ny, ctype=afwDisplay.MAGENTA, size=20)

if np.isfinite(foundX):
dist = np.sqrt((trueX - foundX) ** 2 + (trueY - foundY) ** 2)
if dist < 20:
outTag = "<2"
elif dist < 100:
outTag = "<10"
else:
outTag = ">10"
else:
outTag = "noStar"
else:
if np.isfinite(foundX):
outTag = "noTruth"
else:
outTag = "nothing"

if doPlot:
if np.isfinite(result.psfPixelShape.getIxx()):
distortion = ellipses.SeparableDistortionDeterminantRadius(result.psfPixelShape)
fwhm = SIGMA_TO_FWHM * distortion.getDeterminantRadius() * AUXTEL_PIXEL_SCALE
else:
fwhm = np.nan
display.show_colorbar(False)
ax.set_title(
f"{exposureId=} {inTag=} {outTag=} {fwhm=:.2f} arcsec", color="w"
)
path = Path(args.plotdir)
path.mkdir(parents=True, exist_ok=True)
fn = f"test_pet_{idx:04d}_{exposureId:d}_{inTag}_{outTag}.png"
fig.savefig(path / fn)

return inTag, outTag, runtime, exposureId


def main(args):
# Set up cache directory and register cleanup
defined, cacheDir = DatastoreCacheManager.set_fallback_cache_directory_if_unset()
if defined:
atexit.register(shutil.rmtree, cacheDir, ignore_errors=True)

# Loop through Merlin's curated data
path = Path(os.environ["SUMMIT_EXTRAS_DIR"]) / "data" / "qfm_baseline_assessment.parq"
with warnings.catch_warnings():
warnings.simplefilter("ignore", category=AstropyUserWarning)
table = Table.read(path)
table["exposureId"] = table["day_obs"] * 100_000 + table["sequence_number"]
table = table[args.start:args.end]

intags = np.unique(table["finalTag"])

# Possible PET outcomes
outtags = [
"noStar", # PET didn't find star, but catalog had one
"noTruth", # No catalog star to compare to, but PET found one
"nothing", # No catalog or PET star
"<2", # PET brightest star agrees with catalog to better than 2 arcsec
"<10", # agrees to 10 arcsec
">10", # disagrees by more than 10 arcsec
]
results = {}
for intag in intags:
results[intag] = {}
for outtag in outtags:
results[intag][outtag] = []

if args.nproc == 1:
initializePoolProcess()
for idx, row in enumerate(tqdm(table, smoothing=0.05)):
inTag, outTag, runtime, exposureId = doWork(idx + args.start, row, args.plot)
results[inTag][outTag].append((exposureId, runtime))
with multiprocessing.Pool(args.nproc, initializer=initializePoolProcess) as pool:
futures = []
for idx, row in enumerate(table):
futures.append(pool.apply_async(doWork, (idx + args.start, row, args.plot)))

for row, future in zip(tqdm(table, smoothing=0.05), futures):
inTag, outTag, runtime, exposureId = future.get()
results[inTag][outTag].append((exposureId, runtime))

table = []
for inKey, outDict in results.items():
row = [inKey]
for _, expIds in outDict.items():
row.append(f"{len(expIds)}")
table.append(row)
print(tabulate(table, headers=["input", *outtags]))

table = []
for inKey, outDict in results.items():
row = [inKey]
for _, expIds in outDict.items():
row.append(f"{np.nanmedian([x[1] for x in expIds]):.2f}")
table.append(row)
print(tabulate(table, headers=["input", *outtags]))

print("G >10")
print(results["G"][">10"])
print()


if __name__ == "__main__":
from argparse import ArgumentParser

parser = ArgumentParser()
parser.add_argument("--start", type=int, default=0)
parser.add_argument("--end", type=int, default=6105)
parser.add_argument("--nproc", type=int, default=20)
parser.add_argument("--plot", action="store_true")
parser.add_argument("--plotdir", type=str, default="./")
args = parser.parse_args()
main(args)
Loading
Loading