Skip to content

Commit

Permalink
[Hackathon] Ionization docs fixes (ECP-WarpX#5270)
Browse files Browse the repository at this point in the history
* Fixed typos in generalized Ohm's law

* Fixed Testing link

* Removed minus sign from BTO equation (Zhang eq 8 is wrong)

* Clarify comment about difference to published equation.

Co-authored-by: Axel Huebl <[email protected]>

---------

Co-authored-by: Johannes Van de Wetering <[email protected]>
Co-authored-by: Roelof Groenewald <[email protected]>
Co-authored-by: Axel Huebl <[email protected]>
  • Loading branch information
4 people authored Sep 17, 2024
1 parent 2c7a9be commit f7dd6a9
Show file tree
Hide file tree
Showing 2 changed files with 5 additions and 5 deletions.
4 changes: 2 additions & 2 deletions Docs/source/theory/kinetic_fluid_hybrid_model.rst
Original file line number Diff line number Diff line change
Expand Up @@ -46,7 +46,7 @@ integrating over velocity), also called the generalized Ohm's law, is given by:

.. math::
en_e\vec{E} = \frac{m}{e}\frac{\partial \vec{J}_e}{\partial t} + \frac{m}{e^2}\left( \vec{U}_e\cdot\nabla \right) \vec{J}_e - \nabla\cdot {\overleftrightarrow P}_e - \vec{J}_e\times\vec{B}+\vec{R}_e
en_e\vec{E} = \frac{m}{e}\frac{\partial \vec{J}_e}{\partial t} + \frac{m}{e}\left( \vec{U}_e\cdot\nabla \right) \vec{J}_e - \nabla\cdot {\overleftrightarrow P}_e - \vec{J}_e\times\vec{B}+\vec{R}_e
where :math:`\vec{U}_e = \vec{J}_e/(en_e)` is the electron fluid velocity,
:math:`{\overleftrightarrow P}_e` is the electron pressure tensor and
Expand All @@ -64,7 +64,7 @@ Plugging this back into the generalized Ohm' law gives:
\left(en_e +\frac{m}{e\mu_0}\nabla\times\nabla\times\right)\vec{E} =&
- \frac{m}{e}\left( \frac{\partial\vec{J}_{ext}}{\partial t} + \sum_{s\neq e}\frac{\partial\vec{J}_s}{\partial t} \right) \\
&+ \frac{m}{e^2}\left( \vec{U}_e\cdot\nabla \right) \vec{J}_e - \nabla\cdot {\overleftrightarrow P}_e - \vec{J}_e\times\vec{B}+\vec{R}_e.
&+ \frac{m}{e}\left( \vec{U}_e\cdot\nabla \right) \vec{J}_e - \nabla\cdot {\overleftrightarrow P}_e - \vec{J}_e\times\vec{B}+\vec{R}_e.
If we now further assume electrons are inertialess (i.e. :math:`m=0`), the above equation simplifies to,

Expand Down
6 changes: 3 additions & 3 deletions Docs/source/theory/multiphysics/ionization.rst
Original file line number Diff line number Diff line change
Expand Up @@ -56,18 +56,18 @@ where :math:`\mathrm{d}\tau` is the simulation timestep, which is divided by the
Empirical Extension to Over-the-Barrier Regime for Hydrogen
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

For hydrogen, WarpX offers the modified empirical ADK extension to the Over-the-Barrier (OTB) published in :cite:t:`mpion-zhang_empirical_2014` Eq. (8).
For hydrogen, WarpX offers the modified empirical ADK extension to the Over-the-Barrier (OTB) published in :cite:t:`mpion-zhang_empirical_2014` Eq. (8) (note there is a typo in the paper and there should not be a minus sign in Eq. 8).

.. math::
W_\mathrm{M} = \exp\left[ -\left( a_1 \frac{E^2}{E_\mathrm{b}} + a_2 \frac{E}{E_\mathrm{b}} + a_3 \right) \right] W_\mathrm{ADK}
W_\mathrm{M} = \exp\left[ a_1 \frac{E^2}{E_\mathrm{b}} + a_2 \frac{E}{E_\mathrm{b}} + a_3 \right] W_\mathrm{ADK}
The parameters :math:`a_1` through :math:`a_3` are independent of :math:`E` and can be found in the same reference. :math:`E_\mathrm{b}` is the classical Barrier Suppresion Ionization (BSI) field strength :math:`E_\mathrm{b} = U_\mathrm{ion}^2 / (4 Z)` given here in atomic units (AU). For a detailed description of conversion between unit systems consider the book by :cite:t:`mpion-Mulser2010`.

Testing
^^^^^^^

* `Testing the field ionization module <../../../../Examples/Tests/field_ionization/README.rst>`_.
* `Testing the field ionization module <../../../../en/latest/usage/examples/field_ionization/README.html>`_.

.. bibliography::
:keyprefix: mpion-

0 comments on commit f7dd6a9

Please sign in to comment.