Skip to content

lucebert/langchain-doc-graph

Repository files navigation

LangChain Documentation RAG

A simple RAG (Retrieval Augmented Generation) system for querying LangChain documentation using LangGraph.

CI

Overview

This project provides a simple way to query LangChain documentation using a retrieval-based system. It uses:

  • LangGraph for orchestrating the retrieval and response generation
  • Vector database for storing and retrieving documentation content
  • LLMs for generating natural language responses

Features

  • Document indexing for LangChain documentation
  • Natural language querying of documentation content
  • Contextual responses based on retrieved documentation

Getting Started

  1. Copy .env.example to .env
cp .env.example .env 
  1. Add your API keys to .env:
OPENAI_API_KEY=<your-key>
ELASTICSEARCH_URL=<your-url>
ELASTICSEARCH_API_KEY=<your-key>
  1. Index the documentation:
python index.py
  1. Start querying the documentation:
python query.py "How do I use LangChain agents?"

Customize

You can customize the:

  • Vector store (Elasticsearch, MongoDB, Pinecone)
  • Embedding model
  • Language model for responses
  • System prompts and retrieval parameters

Check the configuration files for available options.

Development

See the LangGraph documentation for more details on extending functionality.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published