Skip to content

mahyamkashani/Automatic-Image-Tagging-2PKNN

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Notes:

  1. This repository includes the partial implementation of the 2PKNN algorithm. Yashaswi Verma and C.V. Jawahar, Image Annotation Using Metric Learning in Semantic Neighbourhoods, ECCV 12. [Link]

  2. Also includes using the ImageNet pre-trained neural nets(RN101, DN169, DN161, VGG16) on mirFlickr dataset for feature extraction in Keras. Pre/post-processing conducted with scikit-learn.

Instructions:

1. Calculating Concept matrices

Run the ./AnotationMatrices/Concepts.ipynb file to create the Annotation Matrices. This results in two file with the names of "testAnnotationFlickr25k.mat" and "trainAnnotationFlickr25k.mat".

2. Feature Extraction

2.1. Download pre-trained ImageNet weights for DenseNet161 and ResNet101 in the imagenet_models folder. 2.2. Run ./FeatureExtraction/feature_extraction.ipynb to extract feature. You might consider these changes:

  • Method: can be set as either "5crops" or "pyramid". "5crops" crops 5 patches from the input image, and "pyramid" uses the "spatial pyramid pooling".
  • ARCHITECTURE: you could use one of the following backbones: VGG16, DenseNet169, DenseNet161, ResNet101
  • PCA_ENABLE: enable using PCA after feature extraction. You can change the variance retaining param in the related code-block.
  • ROBUST_SCALAR_ENABLE: applies robust scalar to the data
  • STANDARD_SCALAR_ENABLE: applies standard scalar to the data

3. Classification based on 2pass KNN algorithm

Run the ./2PKNN_PYTHON/2PKNN_PYTHON.ipynb for classification.

  • train and test: corresping to the .mat files for train and test features
  • trainAnnotation and testAnnotation: corresponds to the matrices resulted from step 1.
  • k: number of neighbors to consider

In the end of twopassknn2 function, some score will be saved which can be used in inference step.

4. Inference

Place your desired images in the ./Inference/Img2Classify/ folder and use ./Inference/app.ipynb to classify it.

Results for 5 Crops

Architecture PCA Robust_scalar Standard_scalar NC Precision Recall F1 score N+
VGG16 No No No 4096 0.54 0.46 0.49 38
VGG16 No Yes No 4096 0.38 0.33 0.35 37
VGG16 No No Yes 4096 0.56 0.44 0.49 38
VGG16 Yes No No 2318 0.54 0.46 0.50 38
VGG16 Yes Yes No 2 0.20 0.20 0.20 37
VGG16 Yes No Yes 2496 0.56 0.44 0.49 38
DN169 No No No 1664 0.27 0.26 0.26 38
DN169 No Yes No 1664 0.31 0.25 0.28 38
DN169 No No Yes 1664 0.31 0.26 0.29 38
DN169 Yes No No 108 0.54 0.46 0.50 38
DN169 Yes Yes No 511 0.30 0.26 0.28 38
DN169 Yes No Yes 629 0.30 0.27 0.29 38
DN161 No No No 2208 0.27 0.25 0.26 38
DN161 No Yes No 2208 0.26 0.22 0.24 38
DN161 No No Yes 2208 0.31 0.26 0.28 38
DN161 Yes No No 140 0.27 0.25 0.26 38
DN161 Yes Yes No 188 0.25 0.23 0.24 38
DN161 Yes No Yes 798 0.30 0.26 0.28 38
RN101 No No No 2048 0.51 0.39 0.44 38
RN101 No Yes No 2048 0.56 0.39 0.46 38
RN101 No No Yes 2048 0.55 0.39 0.46 38
RN101 Yes No No 1009 0.50 0.39 0.44 38
RN101 Yes Yes No 1308 0.55 0.40 0.46 38
RN101 Yes No Yes 1416 0.55 0.39 0.46 38

Samples

This is an image

  • Actual labels: animals, flower, flower_r1, plant_life
  • Predicted labels: flower, plant_life, flower_r1, tree, bird

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 99.0%
  • Python 1.0%