Skip to content

Commit

Permalink
unfold mulr_rev
Browse files Browse the repository at this point in the history
  • Loading branch information
affeldt-aist committed Apr 17, 2024
1 parent 555c57c commit c401207
Show file tree
Hide file tree
Showing 3 changed files with 7 additions and 6 deletions.
4 changes: 3 additions & 1 deletion CHANGELOG_UNRELEASED.md
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,6 @@
+ structure `revop`

- move from `derive.v` to `mathcomp_extra.v`:
+ definition `mulr_rev`
+ canonical `rev_mulr`

### Renamed
Expand Down Expand Up @@ -73,6 +72,9 @@
- in `lebesgue_integral.v`:
+ `integrablerM`, `integrableMr` (were deprecated since version 0.6.4)

- in `forms.v`:
+ definition `mulr_rev`

### Infrastructure

### Misc
3 changes: 1 addition & 2 deletions classical/mathcomp_extra.v
Original file line number Diff line number Diff line change
Expand Up @@ -607,6 +607,5 @@ Structure revop X Y Z (f : Y -> X -> Z) := RevOp {
fun_of_revop :> X -> Y -> Z;
_ : forall x, f x =1 fun_of_revop^~ x }.

Definition mulr_rev {R : ringType} := @GRing.mul R^c.
Canonical rev_mulr {R : ringType} :=
@RevOp _ _ _ mulr_rev (@GRing.mul R) (fun _ _ => erefl).
@RevOp _ _ _ (@GRing.mul R^c) (@GRing.mul R) (fun _ _ => erefl).
6 changes: 3 additions & 3 deletions theories/derive.v
Original file line number Diff line number Diff line change
Expand Up @@ -831,9 +831,9 @@ Proof. by move=> ? ? ?; rewrite mulrDr scalerAr. Qed.
HB.instance Definition _ x := GRing.isLinear.Build R R R _ ( *%R x)
(mulr_is_linear x).

Lemma mulr_rev_is_linear y : linear (mulr_rev y : R -> R).
Proof. by move=> ? ? ?; rewrite /mulr_rev mulrDr scalerAl. Qed.
HB.instance Definition _ y := GRing.isLinear.Build R R R _ (mulr_rev y)
Lemma mulr_rev_is_linear y : linear (@GRing.mul R^c y : R -> R).
Proof. by move=> ? ? ?; rewrite mulrDr scalerAl. Qed.
HB.instance Definition _ y := GRing.isLinear.Build R R R _ (@GRing.mul R^c y)
(mulr_rev_is_linear y).

Lemma mulr_is_bilinear :
Expand Down

0 comments on commit c401207

Please sign in to comment.