Skip to content

Commit

Permalink
simplify plots
Browse files Browse the repository at this point in the history
  • Loading branch information
simei94 committed Jan 30, 2025
1 parent 6d2773c commit 1b908cd
Showing 1 changed file with 13 additions and 14 deletions.
27 changes: 13 additions & 14 deletions src/main/R/badWeather/regressionAnalysis.R
Original file line number Diff line number Diff line change
Expand Up @@ -851,6 +851,9 @@ calcMSE <- function(input) {
optParams <- optim(input, calcMSE)
optParams

alpha <- optParams$par[1]
beta <- optParams$par[2]

#calc adjustedNoRides = noRides - alpha * (1 - exp(-trend / beta)) with optimized alpha and beta
result_data <- result_data %>%
mutate(adjustedNoRides = noRides - as.integer(optParams$par[1] * (1 - exp(-trend / optParams$par[2]))),
Expand All @@ -866,7 +869,7 @@ test_model <- lm(adjustedNoRides ~ tavg, data = result_data)
summary(test_model)

noRides_time_est_demand <- ggplot(result_data) +
geom_point(mapping=aes(x = date,y = noRides), size=3)+
geom_point(mapping=aes(x = date,y = noRides), size=4)+
geom_line(mapping = aes(x=date, y = est_demand), color="red", size=1.5) +
theme_minimal() +
xlab("date") +
Expand All @@ -876,11 +879,11 @@ noRides_time_est_demand <- ggplot(result_data) +
theme(axis.ticks.x = element_line(size = 1),
axis.ticks.y = element_line(size = 1),
axis.ticks.length = unit(15, "pt"),
axis.text = element_text(size=25))
axis.text = element_text(size=45))
# ggtitle("noRides over time + estimated trend (red)")
noRides_time_est_demand

ggsave("nRides_est_demand_time.pdf", noRides_time_est_demand, dpi = 500, w = 12, h = 9)
ggsave("nRides_est_demand_time.pdf", noRides_time_est_demand, dpi = 500, w = 24, h = 9)

adjustedNoRides_time_2 <- ggplot(result_data) +
geom_point(mapping=aes(x = date,y = adjustedNoRides))+
Expand Down Expand Up @@ -1031,11 +1034,7 @@ model <- final_model
test_data <- result_data %>% add_predictions(model = model) %>% add_residuals(model = model) %>% mutate(error = ifelse(abs(resid)>=20,"extreme","normal"))

plot_final_model <- ggplot(test_data %>% filter(year(date)>=2020)) +
# geom_point(data=test_data %>% filter(wday_char=="Mon"),mapping=aes(x = date,y = noRides,color="Mon"))+
geom_point(data=test_data %>% filter(wday_char=="Tue"),mapping=aes(x = date,y = noRides,color="Tue"), size=3)+
geom_point(data=test_data %>% filter(wday_char=="Wed"),mapping=aes(x = date,y = noRides,color="Wed"), size=3)+
geom_point(data=test_data %>% filter(wday_char=="Thu"),mapping=aes(x = date,y = noRides,color="Thu"), size=3)+
# geom_point(data=test_data %>% filter(wday_char=="Fri"),mapping=aes(x = date,y = noRides,color="Fri"))+
geom_point(mapping=aes(x = date,y = noRides), size=4)+
geom_line(aes(x = date,y = pred,color="predicted"), size = 1.2)+
theme_minimal() +
xlab("Date") +
Expand All @@ -1045,11 +1044,11 @@ plot_final_model <- ggplot(test_data %>% filter(year(date)>=2020)) +
theme(axis.ticks.x = element_line(size = 1.5),
axis.ticks.y = element_line(size = 1),
axis.ticks.length = unit(15, "pt"),
axis.text = element_text(size=25)) +
axis.text = element_text(size=45)) +
scale_color_manual(values = colors)
# ggtitle("Linear regression model with independent variables snow, tavg and trend")

ggsave("scatterplot-final-linear-regression-model.pdf", plot_final_model, dpi = 500, w = 12, h = 9)
ggsave("scatterplot-final-linear-regression-model.pdf", plot_final_model, dpi = 500, w = 24, h = 9)

plot_final_model

Expand Down Expand Up @@ -1091,11 +1090,11 @@ residuals_predicted_nRides <- ggplot(test_data %>% filter(year(date)>=2020), aes
theme_minimal() +
xlab("Predicted nRides") +
ylab("Residuals") +
theme(text = element_text(size = 50)) +
theme(text = element_text(size = 45)) +
theme(axis.ticks.x = element_line(size=1),
axis.ticks.y = element_line(size=1),
axis.ticks.length = unit(5, "pt"), legend.position = "none",
axis.text = element_text(size=25))
axis.text = element_text(size=45))
# ggtitle("Residuals over predicted values for linear regression model with independent variables snow, tavg and trend")

ggsave("residuals-predictedValues-final-linear-regression-model.pdf", residuals_predicted_nRides, dpi = 500, w = 12, h = 9)
Expand All @@ -1116,11 +1115,11 @@ plot1 <- ggplot(test_data) +
theme_minimal() +
xlab("Theoretical Quantiles") +
ylab("Model Residual Quantiles") +
theme(text = element_text(size = 50)) +
theme(text = element_text(size = 45)) +
theme(axis.ticks.x = element_line(size=1),
axis.ticks.y = element_line(size=1),
axis.ticks.length = unit(5, "pt"), legend.position = "none",
axis.text = element_text(size=25))
axis.text = element_text(size=45))
# ggtitle("Normal QQ-Plot for the final linear regression model")

plot1
Expand Down

0 comments on commit 1b908cd

Please sign in to comment.