-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_aae.py
295 lines (225 loc) · 10.4 KB
/
train_aae.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
import numpy as np
import argparse
import torch
from torch.optim import Adam
from torchvision.utils import save_image
from torch import autograd
from torchvision import transforms
import torchvision.utils as tvu
from tensorboardX import SummaryWriter
import matplotlib as mpl
import matplotlib.pyplot as plt
from models import *
from utils import *
from prior import *
from data import *
mpl.use('Agg')
parser = argparse.ArgumentParser(description='AAE')
# Task parametersm and model name
parser.add_argument('--uid', type=str, default='AAE',
help='Staging identifier (default: AAE)')
parser.add_argument('--model-type', type=str, default='linear',
help='Type of model (default linear)')
parser.add_argument('--prior', type=str, default='gaussian-mixture',
help='Prior distribution (default: gaussian mixture')
parser.add_argument('--dataset-name', type=str, default='mnist',
help='Name of dataset (default: MNIST')
parser.add_argument('--data-dir', type=str, default='data',
help='Path to dataset (default: data')
parser.add_argument('--latent-size', type=int, default=2, metavar='N',
help='VAE latent size (default: 2')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='input training batch-size')
parser.add_argument('--epochs', type=int, default=25, metavar='N',
help='number of training epochs')
parser.add_argument('--elr', type=float, default=1e-3,
help='Encoder Learning rate (default: 1e-3')
parser.add_argument('--erlr', type=float, default=1e-3,
help='Encoder Learning rate (default: 1e-3')
parser.add_argument('--glr', type=float, default=1e-3,
help='Generator Learning rate (default: 1e-3')
parser.add_argument('--dlr', type=float, default=1e-3 / 5,
help='Discriminator Learning rate (default: 1e-3 / 5')
parser.add_argument('--log-dir', type=str, default='runs',
help='logging directory (default: logs)')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables cuda (default: False')
args = parser.parse_args()
# Set cuda
args.cuda = not args.no_cuda and torch.cuda.is_available()
# Set tensorboard
use_tb = args.log_dir is not None
log_dir = args.log_dir
# Logger
if use_tb:
logger = SummaryWriter(comment='_' + args.uid + '_' + args.dataset_name)
# Enable CUDA, set tensor type and device
if args.cuda:
dtype = torch.cuda.FloatTensor
device = torch.device("cuda:0")
print('GPU')
else:
dtype = torch.FloatTensor
device = torch.device("cpu")
# Data set transforms
transforms = [transforms.Resize((32, 32)), transforms.ToTensor()]
# Get train and test loaders for dataset
loader = Loader(args.dataset_name, args.data_dir, True, args.batch_size, transforms, None, args.cuda)
train_loader = loader.train_loader
test_loader = loader.test_loader
def train_validate(E, D, G, E_optim, ER_optim, D_optim, G_optim, loader, epoch, model_type, train):
data_loader = loader.train_loader if train else loader.test_loader
# loss definitions
bce_loss = nn.BCELoss(reduction='mean')
E.train() if train else E.eval()
D.train() if train else D.eval()
G.train() if train else G.eval()
EG_batch_loss = 0
D_batch_loss = 0
ER_batch_loss = 0
for batch_idx, (x, y) in enumerate(data_loader):
x = x.cuda() if args.cuda else x
y = one_hot(y, loader.num_class).type(torch.FloatTensor)
y = y.cuda() if args.cuda else y
batch_size = x.size(0)
if model_type != 'conv':
x = x.view(batch_size, -1)
if train:
E_optim.zero_grad()
ER_optim.zero_grad()
D_optim.zero_grad()
G_optim.zero_grad()
# Encoder - Generator forward
z_fake = E(x)
if model_type == 'conv':
z_fake = z_fake.view(-1, args.latent_size, 1, 1)
else:
z_fake = z_fake.view(-1, args.latent_size)
x_hat = G(z_fake)
# reconstruction loss
EG_loss = bce_loss(x_hat.view(-1, 1), x.view(-1, 1))
EG_batch_loss += EG_loss.item() / batch_size
if train:
EG_loss.backward()
G_optim.step()
E_optim.step()
# Discriminator forward
# 1) sample real z
# z_real = sample_gauss_noise(batch_size, args.latent_size).view(-1, args.latent_size)
z_real = gaussian_mixture(batch_size, loader.num_class, 0.5, 0.1, None)
z_real = torch.from_numpy(z_real).type(torch.FloatTensor)
z_real = z_real.cuda() if args.cuda else z_real
# 2) Encoder forward, get latent z from data
z_fake = E(x).squeeze().detach()
# build labels for discriminator
y_real = torch.ones(z_real.size(0), 1)
y_fake = torch.zeros(z_fake.size(0), 1)
y_real = y_real.cuda() if args.cuda else y_real
y_fake = y_fake.cuda() if args.cuda else y_fake
# Draw z one hot labels from prior type
z_label = np.random.randint(0, loader.num_class, batch_size)
z_sample = gaussian_mixture(batch_size, loader.num_class, 0.5, 0.1, z_label)
z_label = torch.from_numpy(z_label).type(torch.LongTensor)
z_sample = torch.from_numpy(z_sample).type(torch.FloatTensor)
z_label = one_hot(z_label, loader.num_class).type(torch.FloatTensor)
z_label = z_label.cuda() if args.cuda else z_label
z_sample = z_sample.cuda() if args.cuda else z_sample
# Discriminator forward on sampled z_real and z_fake from encoder
# with added class label information
z_real = torch.cat((z_sample, z_label), 1)
z_fake = torch.cat((z_fake, y), 1)
y_hat_real = D(z_real)
y_hat_fake = D(z_fake)
# Discriminator loss
D_loss = bce_loss(y_hat_fake, y_fake) + bce_loss(y_hat_real, y_real)
D_batch_loss += D_loss.item() / batch_size
if train:
D_loss.backward()
D_optim.step()
# Encoder forward, Discriminator
z_fake = E(x)
# Add label information
z_fake = torch.cat((z_fake, y), 1)
y_hat_fake = D(z_fake.squeeze())
ER_loss = -torch.mean(torch.log(y_hat_fake + 1e-9))
ER_batch_loss += ER_loss.item() / batch_size
if train:
ER_loss.backward()
ER_optim.step()
# collect better stats
return EG_batch_loss / (batch_idx + 1), D_batch_loss / (batch_idx + 1), ER_batch_loss / (batch_idx + 1)
def execute_graph(E, D, G, E_optim, ER_optim, D_optim, G_optim, loader, epoch, model_type, use_tb):
# Training loss
EG_t_loss, D_t_loss, ER_t_loss = train_validate(E, D, G, E_optim, ER_optim, D_optim, G_optim, loader, epoch, model_type, train=True)
# Validation loss
EG_v_loss, D_v_loss, ER_v_loss = train_validate(E, D, G, E_optim, ER_optim, D_optim, G_optim, loader, epoch, model_type, train=False)
print('=> Epoch: {} Average Train EG loss: {:.4f}, D loss: {:.4f}, ER loss: {:.4f}'.format(
epoch, EG_t_loss, D_t_loss, ER_t_loss))
print('=> Epoch: {} Average Valid EG loss: {:.4f}, D loss: {:.4f}, ER loss: {:.4f}'.format(epoch, EG_v_loss, D_v_loss, ER_v_loss))
if use_tb:
logger.add_scalar(log_dir + '/EG-train-loss', EG_t_loss, epoch)
logger.add_scalar(log_dir + '/D-train-loss', D_t_loss, epoch)
logger.add_scalar(log_dir + '/ER-train-loss', ER_t_loss, epoch)
logger.add_scalar(log_dir + '/EG-valid-loss', EG_v_loss, epoch)
logger.add_scalar(log_dir + '/D-valid-loss', D_v_loss, epoch)
logger.add_scalar(log_dir + '/ER-valid-loss', ER_v_loss, epoch)
# # Generation examples
img_shape = loader.img_shape[1:]
sample = aae_generation_example(G, args.model_type, args.latent_size, 10, img_shape, args.cuda)
sample = sample.detach()
sample = tvu.make_grid(sample, normalize=True, scale_each=True)
logger.add_image('generation example', sample, epoch)
# Reconstruction examples
reconstructed = aae_reconstruct(E, G, args.model_type, test_loader, 10, img_shape, args.cuda)
reconstructed = reconstructed.detach()
reconstructed = tvu.make_grid(reconstructed, normalize=True, scale_each=True)
logger.add_image('reconstruction example', reconstructed, epoch)
# Manifold generation example
sample = aae_manifold_generation_example(G, img_shape, epoch, args.cuda)
sample = sample.detach()
sample = tvu.make_grid(sample, normalize=True, scale_each=True)
logger.add_image('manifold example', sample, epoch)
return EG_v_loss, D_v_loss, ER_v_loss
# Model definitions
if args.model_type == 'conv':
E = AAE_Encoder(1, args.latent_size, 128).type(dtype)
G = AAE_Generator(1, args.latent_size, 128).type(dtype)
D = AAE_Discriminator(args.latent_size + loader.num_class, 128).type(dtype)
else:
E = AAE_MNIST_Encoder(32 * 32, args.latent_size).type(dtype)
G = AAE_MNIST_Generator(32 * 32, args.latent_size).type(dtype)
D = AAE_MNIST_Discriminator(args.latent_size + loader.num_class, 32 * 32).type(dtype)
# Init module weights
init_normal_weights(E, 0, 0.02)
init_normal_weights(G, 0, 0.02)
init_normal_weights(D, 0, 0.02)
# Optimiser definitions
E_optim = Adam(E.parameters(), lr=args.elr)
G_optim = Adam(G.parameters(), lr=args.glr)
D_optim = Adam(D.parameters(), lr=args.dlr)
ER_optim = Adam(E.parameters(), lr=args.erlr)
# Utils
num_epochs = args.epochs
best_loss = np.inf
# Main training loop
for epoch in range(1, num_epochs + 1):
_, _, _ = execute_graph(E, D, G, E_optim, ER_optim, D_optim, G_optim, loader, epoch, args.model_type, use_tb)
# latent space scatter example
# use_pca = True
# centroids, labels = latentcluster2d_example(E, args.model_type, loader, use_pca, args.cuda)
# cmap = ['b', 'g', 'r', 'c', 'y', 'm', 'k']
# colors = [cmap[(int(i) % 7)] for i in labels]
# fig = plt.figure()
# plt.scatter(centroids[:, 0], centroids[:, 1], c=colors, cmap=plt.cm.Spectral)
# plt.savefig('output/latent_cluster_' + args.uid + '_' + args.dataset_name + '.png')
# plt.close(fig)
# if args.latent_size == 2:
# img_shape = loader.img_shape[1:]
# latent_space = latentspace2d_example(E, img_shape, args.batch_size, args.cuda)
# fig = plt.figure()
# plt.imshow(latent_space)
# plt.tight_layout()
# plt.savefig('output/latent_space_' + args.uid + '_' + args.dataset_name + '.png')
# plt.close(fig)
# TensorboardX logger
logger.close()