Skip to content

mdiephuis/generative-models

Repository files navigation

Collection of generative models in pytorch

dc-gan

Simple implementation of DCGAN [Paper], see also: [cs231n]

python train_dcgan.py

MNIST Generation results after 15 epochs:

wasserstein-gan

Pytorch implementation of the Wasserstein gan. [Paper]

python train_wgan.py

MNIST Generation results after 3000 iterations:

vae-gan

Pytorch implementation of VAEGAN. [Paper]

python train_vaegan.py --dataset-name CelebA --data-dir /path/to/noncropped/CelebA/

CelebA generation after 1 epoch:

Cropped CelebA generation after 4 epochs:

AAE

Adversarial Auto Encoder [Paper]

python train_aae.py --model-type MNIST --dataset MNIST --epochs 10 --latent-size 2

Latent manifold visualisation after 10 epochs:

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages