-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_vaegan.py
281 lines (201 loc) · 9.79 KB
/
train_vaegan.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import argparse
import torch
from torch.optim import RMSprop
from torch.optim.lr_scheduler import ExponentialLR
from tensorboardX import SummaryWriter
import torchvision.utils as tvu
from models import *
from utils import *
from data import *
parser = argparse.ArgumentParser(description='VAEGAN')
# Task parametersm and model name
parser.add_argument('--uid', type=str, default='VAEGAN',
help='Staging identifier (default: VAEGAN)')
# data loader parameters
parser.add_argument('--dataset-name', type=str, default='MNIST',
help='Name of dataset (default: MNIST')
parser.add_argument('--data-dir', type=str, default='data',
help='Path to dataset (default: data')
parser.add_argument('--batch-size', type=int, default=64, metavar='N',
help='Input training batch-size (default: 64)')
# Optimizer
parser.add_argument('--epochs', type=int, default=100, metavar='N',
help='Number of epochs (default: 100)')
# Noise dimension Generator
parser.add_argument('--latent-size', type=int, default=128, metavar='N',
help='Latent size (default: 128)')
parser.add_argument("--lambda_mse", default=1e-6,
action="store", type=float, help='MSE weight (default: 1e6')
parser.add_argument("--decay-mse", default=1,
action="store", type=float, help='MSE decay (default: 1')
parser.add_argument("--margin", default=0.35,
action="store", type=float, help='Margin (default: 0.35')
parser.add_argument("--equilibrium", default=0.68,
action="store", type=float, help='Equilibrium (default: 0.68')
parser.add_argument("--lr", default=3e-4,
action="store", type=float, help='Learning rate (default: 3e-4')
parser.add_argument("--decay-lr", default=0.75,
action="store", type=float, help='Learning rate decay (default: 0.75')
parser.add_argument("--decay-margin", default=1,
action="store", type=float, help='Decay margin (default: 1')
parser.add_argument("--decay-equilibrium", default=1,
action="store", type=float, help='Decay equilibrium (default: 1')
parser.add_argument('--log-dir', type=str, default='runs',
help='logging directory (default: runs)')
# Device (GPU)
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables cuda (default: False')
args = parser.parse_args()
# Set tensorboard
use_tb = args.log_dir is not None
log_dir = args.log_dir
# Logger
if use_tb:
logger = SummaryWriter(comment='_' + args.uid + '_' + args.dataset_name)
# Enable CUDA, set tensor type and device
args.cuda = not args.no_cuda and torch.cuda.is_available()
torch.cuda.set_device(0)
if args.cuda:
dtype = torch.cuda.FloatTensor
device = torch.device("cuda:0")
print('GPU')
else:
dtype = torch.FloatTensor
device = torch.device("cpu")
# ugly
if args.dataset_name == 'CelebA':
reconstruction_level = 2
in_channels = 3
loader = CelebALoader(args.data_dir, args.batch_size, 0.2, True, True, args.cuda)
train_loader = loader.train_loader
test_loader = loader.test_loader
else:
reconstruction_level = 1
in_channels = 1
# Data set transforms
transforms = [transforms.Resize((64, 64)), transforms.ToTensor(), transforms.Normalize([0.5], [0.5])]
# DATASET
loader = Loader(args.dataset_name, args.data_dir, True, args.batch_size, transforms, None, args.cuda)
train_loader = loader.train_loader
test_loader = loader.test_loader
def train_validate(vaegan, Enc_optim, Dec_optim, Disc_optim, margin, equilibrium, lambda_mse, loader, epoch, train):
vaegan.train() if train else vaegan.eval()
data_loader = loader.train_loader if train else loader.test_loader
batch_encoder_loss = 0
batch_decoder_loss = 0
batch_discriminator_loss = 0
for batch_idx, (x, _) in enumerate(data_loader):
batch_size = x.size(0)
x = x.cuda() if args.cuda else x
# base forward pass, no training
mu, log_var, x_hat, x_draw_hat, x_features, x_hat_features, y_x, y_draw_hat = vaegan(x)
# kl div against standard normal
kld_loss = -0.5 * torch.sum(1 + log_var - mu.pow(2) - log_var.exp())
# MSE loss between intermediate layers
feature_loss = torch.sum(0.5 * (x_features - x_hat_features) ** 2, 1)
# bce over the labels for the discriminator/gan
bce_disc_y_x = -torch.log(y_x + 1e-3)
# bce_disc_y_x_hat = torch.sum(-torch.log(1 - y_x_hat + 1e-3))
bce_disc_y_draw_hat = -torch.log(1 - y_draw_hat + 1e-3)
# Aggregate losses
encoder_loss = torch.sum(kld_loss) + torch.sum(feature_loss)
discriminator_loss = torch.sum(bce_disc_y_x) + torch.sum(bce_disc_y_draw_hat)
decoder_loss = torch.sum(lambda_mse * feature_loss) - (1.0 - lambda_mse) * discriminator_loss
# Reporting
batch_encoder_loss += torch.mean(encoder_loss).item() / batch_size
batch_decoder_loss += torch.mean(decoder_loss).item() / batch_size
batch_discriminator_loss += torch.mean(discriminator_loss).item() / batch_size
# Encoder back
if train:
# Encoder is always trained
vaegan.zero_grad()
# Enc_optim.zero_grad()
encoder_loss.backward(retain_graph=True)
Enc_optim.step()
vaegan.zero_grad()
# Selectively train decoder and discriminator
# REFERENCE: https://github.com/lucabergamini/VAEGAN-PYTORCH
if torch.mean(-torch.log(y_x + 1e-3)).item() < equilibrium - margin or \
torch.mean(-torch.log(1 - y_draw_hat + 1e-3)).item() < equilibrium - margin:
train_disc = False
else:
train_disc = True
if torch.mean(-torch.log(y_x + 1e-3)).item() > equilibrium + margin or \
torch.mean(-torch.log(1 - y_draw_hat + 1e-3)).item() > equilibrium + margin:
train_dec = False
else:
train_dec = True
if train_disc is False and train_dec is False:
train_disc = True
train_dec = True
if train_dec:
decoder_loss.backward(retain_graph=True)
Dec_optim.step()
vaegan.discriminator.zero_grad()
if train_disc:
discriminator_loss.backward()
Disc_optim.step()
# all done
batch_encoder_loss /= (batch_idx + 1)
batch_decoder_loss /= (batch_idx + 1)
batch_discriminator_loss /= (batch_idx + 1)
return batch_encoder_loss, batch_decoder_loss, batch_discriminator_loss
def execute_graph(vaegan, Enc_optim, Dec_optim, Disc_optim, enc_schedular,
dec_schedular, disc_schedular, margin, equilibrium, lambda_mse, loader, epoch):
t_loss_enc, t_loss_dec, t_loss_disc = train_validate(vaegan, Enc_optim, Dec_optim, Disc_optim, margin, equilibrium, lambda_mse, loader, epoch, True)
v_loss_enc, v_loss_dec, v_loss_disc = train_validate(vaegan, Enc_optim, Dec_optim, Disc_optim, margin, equilibrium, lambda_mse, loader, epoch, False)
print('=> Epoch: {} Train loss encoder: {:.4f} - decoder: {:.4f} - discriminator: {:.4f}'.format(
epoch, t_loss_enc, t_loss_dec, t_loss_disc))
print('=> Epoch: {} Validation loss: encoder: {:.4f} - decoder: {:.4f} - discriminator: {:.4f}'.format(
epoch, v_loss_enc, v_loss_dec, v_loss_disc))
# Step the schedulars
enc_schedular.step()
dec_schedular.step()
disc_schedular.step()
if use_tb:
logger.add_scalar(log_dir + '/Encoder-train-loss', t_loss_enc, epoch)
logger.add_scalar(log_dir + '/Decoder-train-loss', t_loss_dec, epoch)
logger.add_scalar(log_dir + '/Discriminator-train-loss', t_loss_disc, epoch)
# logger.add_scalar(log_dir + '/Encoder-valid-loss', v_loss_enc, epoch)
# logger.add_scalar(log_dir + '/Decoder-valid-loss', v_loss_dec, epoch)
# logger.add_scalar(log_dir + '/Discriminator-valid-loss', v_loss_disc, epoch)
# Generate images
img_shape = loader.img_shape
sample = vaegan_generation_example(vaegan, args.latent_size, 10, img_shape, args.cuda)
sample = sample.detach()
sample = tvu.make_grid(sample, normalize=True, scale_each=True)
logger.add_image('generation example', sample, epoch)
return
# Model definitions
vaegan = VAEGAN(in_channels, args.latent_size, reconstruction_level).type(dtype)
# Init
vaegan.apply(init_xavier_weights)
# Optimizers
Enc_optim = RMSprop(params=vaegan.encoder.parameters(), lr=args.lr, alpha=0.9, eps=1e-8,
weight_decay=0, momentum=0, centered=False)
Dec_optim = RMSprop(params=vaegan.decoder.parameters(), lr=args.lr, alpha=0.9, eps=1e-8,
weight_decay=0, momentum=0, centered=False)
Disc_optim = RMSprop(params=vaegan.discriminator.parameters(), lr=args.lr, alpha=0.9, eps=1e-8,
weight_decay=0, momentum=0, centered=False)
# Scheduling
enc_schedular = ExponentialLR(Enc_optim, gamma=args.decay_lr)
dec_schedular = ExponentialLR(Dec_optim, gamma=args.decay_lr)
disc_schedular = ExponentialLR(Disc_optim, gamma=args.decay_lr)
# Main epoch loop
margin = args.margin
equilibrium = args.equilibrium
lambda_mse = args.lambda_mse
for epoch in range(args.epochs):
execute_graph(vaegan, Enc_optim, Dec_optim, Disc_optim, enc_schedular,
dec_schedular, disc_schedular, margin, equilibrium, lambda_mse, loader, epoch)
# Decay
# REFERENCE: https://github.com/lucabergamini/VAEGAN-PYTORCH
margin *= args.decay_margin
equilibrium *= args.decay_equilibrium
if margin > equilibrium:
equilibrium = margin
lambda_mse *= args.decay_mse
if lambda_mse > 1:
lambda_mse = 1
# TensorboardX logger
logger.close()