Big dAta BEnchmarking pLatform, a generic, architecture-level and scalable benchmarking platform, destined to the real-time collection, analytics and reporting of data and events shared between the layers of complex Big Data applications.
Benchmark name is inspired from the myth of the Tower of BABEL, used to justify the origin of the presence of multiple spoken languages.
The main features of BABEL:
- Genericity: technology-, application- and architecture-agnostic.
- Dynamicity: runs in parallel with the system, without interfering with its behavior, and with negligible overhead.
- Adaptability: adapts to any number of layers in the Big Data application, as well as to any type of data and workloads.
- Multi-Paradigm: able to benchmark streaming and batch processing systems, as well as operational and decisional platforms.
- End-to-End Solution: evaluates the behavior of the whole system, by measuring application- and system-level metrics.
- Real-time Reporting: offers a real-time reporting layer, that illustrates the system's metrics on the fly.
- Distribution and Scalability: configurable, and offer a scalable collection, processing engines and storage, in order to enable the continuous archiving of metrics for a better analysis.
- Agility: flexible during the different integration phases and also at run-time, new layers, metrics, and processing jobs can be added on the fly.
- Check if the default data generator and Workloads are enough for your needs, or develop your own by extending the following abstract classes: Generator and Workload.
- Create your inventory describing the SUT and BABEL nodes (inventory example below).
- Specify the configuration and architecture parameters in the group_vars files by defining :
- Workload : parallelism level, number of fields and records, etc.
- Data Generator, consumers and producers configuration
- SUT environment : servers addresses, number of layers, resources name like tables, topics, queues, etc.
- BABEL installation parameters
4.install and initialize the different benchmark components by using the existing Ansible playbooks that will use the defined variables. (as described in the installation section below)
- JDK 1.8
- Ansible
- Install Ansible :
http://docs.ansible.com/ansible/latest/installation_guide/intro_installation.html
-
Enable Remote Sessions if you use MacOS for test
-
Install JDK 1.8
- Clone the BABEL project from Github
git clone https://github.com/mehdibn/BABEL.git
-
Configure your produce by extending the java abstract class tn.lipsic.babel.adapters.GenericProducer
-
Create your own BABEL deployment in the benchmark-installation-orchestration module
-
Configure the inventory with the different groups:
- Benchmark Core Nodes
[elasticsearch-nodes]
elastic-node-1
elastic-node-2
elastic-node-3
[logstash-nodes]
logstash-node-1
logstash-node-2
logstash-node-3
[kibana-nodes]
kibana-node-1
[kafka-nodes]
kafka-node-1
kafka-node-2
kafka-node-3
[babel-nodes]
babel-node-1
babel-node-2
babel-node-3
[producer-nodes]
node1
node2
node3
- System Under Test Nodes
[sut]
sut-node-1
sut-node-2
sut-node-3
sut-node-4
sut-node-5
- Define the different BABEL and SUT parameters in the group_vars/all file, e.g :
- Benchmark Core properties
# babel properties
# OS System : linux | darwin
os_type : linux
parent_dir : /var/app
babel_install_parent_dir: '{{parent_dir}}/babel/'
babel_install_dir: '{{babel_install_parent_dir}}/{{babel_name}}'
babel_install_link_dir: '{{babel_install_parent_dir}}/babel'
babel_name : 'babel-{{babel_ver}}'
#change these properties if you want to use your own jars with specific producers and consumers
#babel_mirror : https://github.com/mehdibn/babel/releases/download/
babel_ver : '1.0-SNAPSHOT'
#kafka
embedded_kafka: true
kafka_install_parent_dir: '{{parent_dir}}/kafka/'
kafkabrokers : 'host1:port, host2:port, host3:port'
zookeeperquorum : 'host1:port, host2:port, host3:port'
kafkarep: "3"
#elastic
embedded_elasticsearch: true
elasticsearch_install_parent_dir: '{{parent_dir}}/elasticsearch/'
elastic_coordinator : 'host1:port, host2:port, host3:port'
#logstash
embedded_logstash: true
logstash_install_parent_dir: '{{parent_dir}}/logstash/'
#kibana
embedded_kibana: true
kibana_install_parent_dir: '{{parent_dir}}/kibana/'
- System Under Test Properties
#SUT properties
#Metricbeat
metricbeat_install_parent_dir: '{{parent_dir}}/metricbeat/'
- Producer(s) Properties (with Kafka Example)
#Producer Properties described in the README of the benchmark-data-generation module
producer: 'tn.lipsic.integration.producers.KafkaProducer'
producerProperties: '-threads 5 -target 1000000'
# Properties of this var can be loaded in your producer implementation via the getProperties() method of the GenericProducer Abstract Class
SUTProperties : 'SUTkafkabrokers=host1:port, host2:port, host3:port ; SUTtopic=kafkatopic ; SUTZookeeper=host1:port, host2:port, host3:port'
- Consumer Agent(s) Properties (with Examples)
#Consumers properties
consumers_jolokia_agent:
- id: "1"
layer: "layer1"
port: "7770"
type: "Kafka"
user: "kafka"
metrics:
- mbean: "kafka.server:name=MessagesInPerSec,topic={{ SUTtopic }},type=BrokerTopicMetrics"
attr: "Count"
field: "MessagesInPerSec"
- id: "4"
layer: "layer3"
port: "7771"
type: "DataNode"
user: "hdfs"
metrics:
- mbean: "Hadoop:name=FSDatasetState,service=DataNode"
attr: "DfsUsed"
field: "DfsUsed"
- mbean: "Hadoop:name=RpcActivityForPort8010,service=DataNode"
attr: "RpcProcessingTimeAvgTime"
field: "RpcProcessingTimeAvgTime"
- Embedded Consumer(s) Properties
consumers_jolokia_embedded:
- id: "2"
layer: "layer2"
port_executor: "7775"
port_driver: "7772"
type: "spark-streaming"
metrics:
- mbean: "java.lang:name=PS MarkSweep,type=GarbageCollector"
attr: "CollectionTime"
field: "gc.psms_collection_time"
- id: "3"
layer: "layer2"
port_executor: "7776"
port_driver: "7773"
type: "spark-streaming"
metrics:
- mbean: "java.lang:name=PS MarkSweep,type=GarbageCollector"
attr: "CollectionTime"
field: "gc.psms_collection_time"
- id: "6"
layer: "layer4"
port_executor: "7777"
port_driver: "7774"
type: "spark"
metrics:
- mbean: "java.lang:name=PS MarkSweep,type=GarbageCollector"
attr: "CollectionTime"
field: "gc.psms_collection_time"
- from the benchmark-installation-orchestration module, install BABEL
ansible-playbook install.yml
- initialize BABEL
ansible-playbook init-balel-nodes.yml
- initialize SUT
ansible-playbook init-sut-nodes.yml
- start Producers
ansible-playbook start-producers.yml