Skip to content

Commit

Permalink
deploy: 96f2c74
Browse files Browse the repository at this point in the history
  • Loading branch information
frostedoyster committed Jul 28, 2024
0 parents commit 05dfea2
Show file tree
Hide file tree
Showing 205 changed files with 155,240 additions and 0 deletions.
6 changes: 6 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
/.tox/
/build/
/dist/
*.egg-info
__pycache__/

Empty file added .nojekyll
Empty file.
11 changes: 11 additions & 0 deletions index.html
Original file line number Diff line number Diff line change
@@ -0,0 +1,11 @@
<!DOCTYPE html>
<html>

<head>
<meta charset="utf-8" />
<meta http-equiv="X-UA-Compatible" content="IE=edge,chrome=1" />
<meta http-equiv="refresh" content="0;URL=latest/index.html" />
</head>

<body></body>
</html>
4 changes: 4 additions & 0 deletions latest/.buildinfo
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
# Sphinx build info version 1
# This file hashes the configuration used when building these files. When it is not found, a full rebuild will be done.
config: de62692a86e8789db1a2d38f12e3fc2e
tags: 645f666f9bcd5a90fca523b33c5a78b7
151 changes: 151 additions & 0 deletions latest/_downloads/1403485000e5389f5f360017c3c8ecb2/llpr.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,151 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"\n# Computing LLPR uncertainties\n\nThis tutorial demonstrates how to use an already trained and exported model\nfrom Python. It involves the computation of the local prediction rigidity\n([LPR](LPR_)) for every atom of a single ethanol molecule, using the\nlast-layer prediction rigidity ([LLPR](LLPR_)) approximation.\n\n\nThe model was trained using the following training options.\n\n.. literalinclude:: options.yaml\n :language: yaml\n\nYou can train the same model yourself with\n\n.. literalinclude:: train.sh\n :language: bash\n\nA detailed step-by-step introduction on how to train a model is provided in\nthe `label_basic_usage` tutorial.\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import torch\nfrom metatensor.torch.atomistic import load_atomistic_model"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Exported models can be loaded using the `load_atomistic_model` function from the\nmetatensor.torch.atomistic` module. The function requires the path to the exported\nmodel and, for many models, also the path to the respective extensions directory.\nBoth are produced during the training process.\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"model = load_atomistic_model(\"model.pt\", extensions_directory=\"extensions/\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"In metatrain, a Dataset is composed of a list of systems and a dictionary of targets.\nThe following lines illustrate how to read systems and targets from xyz files, and\nhow to create a Dataset object from them.\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from metatrain.utils.data import Dataset, read_systems, read_targets # noqa: E402\nfrom metatrain.utils.neighbor_lists import get_system_with_neighbor_lists # noqa: E402\n\n\nqm9_systems = read_systems(\"qm9_reduced_100.xyz\")\n\ntarget_config = {\n \"energy\": {\n \"quantity\": \"energy\",\n \"read_from\": \"ethanol_reduced_100.xyz\",\n \"reader\": \"ase\",\n \"key\": \"energy\",\n \"unit\": \"kcal/mol\",\n \"forces\": False,\n \"stress\": False,\n \"virial\": False,\n },\n}\ntargets, _ = read_targets(target_config)\n\nrequested_neighbor_lists = model.requested_neighbor_lists()\nqm9_systems = [\n get_system_with_neighbor_lists(system, requested_neighbor_lists)\n for system in qm9_systems\n]\ndataset = Dataset({\"system\": qm9_systems, **targets})\n\n# We also load a single ethanol molecule on which we will compute properties.\n# This system is loaded without targets, as we are only interested in the LPR\n# values.\nethanol_system = read_systems(\"ethanol_reduced_100.xyz\")[0]\nethanol_system = get_system_with_neighbor_lists(\n ethanol_system, requested_neighbor_lists\n)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"The dataset is fully compatible with torch. For example, be used to create\na DataLoader object.\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from metatrain.utils.data import collate_fn # noqa: E402\n\n\ndataloader = torch.utils.data.DataLoader(\n dataset,\n batch_size=10,\n shuffle=False,\n collate_fn=collate_fn,\n)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We now wrap the model in a LLPRUncertaintyModel object, which will allows us\nto compute prediction rigidity metrics, which are useful for uncertainty\nquantification and model introspection.\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from metatensor.torch.atomistic import ( # noqa: E402\n MetatensorAtomisticModel,\n ModelMetadata,\n)\n\nfrom metatrain.utils.llpr import LLPRUncertaintyModel # noqa: E402\n\n\nllpr_model = LLPRUncertaintyModel(model)\nllpr_model.compute_covariance(dataloader)\nllpr_model.compute_inverse_covariance(regularizer=1e-4)\n\n# calibrate on the same dataset for simplicity. In reality, a separate\n# calibration/validation dataset should be used.\nllpr_model.calibrate(dataloader)\n\nexported_model = MetatensorAtomisticModel(\n llpr_model.eval(),\n ModelMetadata(),\n llpr_model.capabilities,\n)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can now use the model to compute the LPR for every atom in the ethanol molecule.\nTo do so, we create a ModelEvaluationOptions object, which is used to request\nspecific outputs from the model. In this case, we request the uncertainty in the\natomic energy predictions.\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"from metatensor.torch.atomistic import ModelEvaluationOptions, ModelOutput # noqa: E402\n\n\nevaluation_options = ModelEvaluationOptions(\n length_unit=\"angstrom\",\n outputs={\n # request the uncertainty in the atomic energy predictions\n \"mtt::aux::energy_uncertainty\": ModelOutput(per_atom=True),\n # `per_atom=False` would return the total uncertainty for the system,\n # or (the inverse of) the TPR (total prediction rigidity)\n # you also can request other outputs from the model here, for example:\n # \"energy\": ModelOutput(per_atom=True),\n # \"mtt::aux::last_layer_features\": ModelOutput(per_atom=True),\n },\n selected_atoms=None,\n)\n\noutputs = exported_model([ethanol_system], evaluation_options, check_consistency=False)\nlpr = outputs[\"mtt::aux::energy_uncertainty\"].block().values.detach().cpu().numpy()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"We can now visualize the LPR values using the `plot_atoms` function from\n``ase.visualize.plot``.\n\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"collapsed": false
},
"outputs": [],
"source": [
"import ase.io # noqa: E402\nimport matplotlib.pyplot as plt # noqa: E402\nfrom ase.visualize.plot import plot_atoms # noqa: E402\nfrom matplotlib.colors import LogNorm # noqa: E402\n\n\nstructure = ase.io.read(\"ethanol_reduced_100.xyz\")\nnorm = LogNorm(vmin=min(lpr), vmax=max(lpr))\ncolormap = plt.get_cmap(\"viridis\")\ncolors = colormap(norm(lpr))\nax = plot_atoms(structure, colors=colors, rotation=\"180x,0y,0z\")\ncustom_ticks = [1e10, 2e10, 5e10, 1e11, 2e11]\ncbar = plt.colorbar(\n plt.cm.ScalarMappable(norm=norm, cmap=colormap),\n ax=ax,\n label=\"LPR\",\n ticks=custom_ticks,\n)\ncbar.ax.set_yticklabels([f\"{tick:.0e}\" for tick in custom_ticks])\ncbar.minorticks_off()\nplt.show()"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.12.4"
}
},
"nbformat": 4,
"nbformat_minor": 0
}
181 changes: 181 additions & 0 deletions latest/_downloads/2ab49b443a2890c2d9b24a2fcebdf275/llpr.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,181 @@
"""
Computing LLPR uncertainties
============================
This tutorial demonstrates how to use an already trained and exported model
from Python. It involves the computation of the local prediction rigidity
(`LPR <LPR_>`_) for every atom of a single ethanol molecule, using the
last-layer prediction rigidity (`LLPR <LLPR_>`_) approximation.
.. _LPR: https://pubs.acs.org/doi/10.1021/acs.jctc.3c00704
.. _LLPR: https://arxiv.org/html/2403.02251v1
The model was trained using the following training options.
.. literalinclude:: options.yaml
:language: yaml
You can train the same model yourself with
.. literalinclude:: train.sh
:language: bash
A detailed step-by-step introduction on how to train a model is provided in
the :ref:`label_basic_usage` tutorial.
"""

# %%
#

import torch
from metatensor.torch.atomistic import load_atomistic_model


# %%
#
# Exported models can be loaded using the `load_atomistic_model` function from the
# metatensor.torch.atomistic` module. The function requires the path to the exported
# model and, for many models, also the path to the respective extensions directory.
# Both are produced during the training process.


model = load_atomistic_model("model.pt", extensions_directory="extensions/")

# %%
#
# In metatrain, a Dataset is composed of a list of systems and a dictionary of targets.
# The following lines illustrate how to read systems and targets from xyz files, and
# how to create a Dataset object from them.

from metatrain.utils.data import Dataset, read_systems, read_targets # noqa: E402
from metatrain.utils.neighbor_lists import get_system_with_neighbor_lists # noqa: E402


qm9_systems = read_systems("qm9_reduced_100.xyz")

target_config = {
"energy": {
"quantity": "energy",
"read_from": "ethanol_reduced_100.xyz",
"reader": "ase",
"key": "energy",
"unit": "kcal/mol",
"forces": False,
"stress": False,
"virial": False,
},
}
targets, _ = read_targets(target_config)

requested_neighbor_lists = model.requested_neighbor_lists()
qm9_systems = [
get_system_with_neighbor_lists(system, requested_neighbor_lists)
for system in qm9_systems
]
dataset = Dataset({"system": qm9_systems, **targets})

# We also load a single ethanol molecule on which we will compute properties.
# This system is loaded without targets, as we are only interested in the LPR
# values.
ethanol_system = read_systems("ethanol_reduced_100.xyz")[0]
ethanol_system = get_system_with_neighbor_lists(
ethanol_system, requested_neighbor_lists
)

# %%
#
# The dataset is fully compatible with torch. For example, be used to create
# a DataLoader object.

from metatrain.utils.data import collate_fn # noqa: E402


dataloader = torch.utils.data.DataLoader(
dataset,
batch_size=10,
shuffle=False,
collate_fn=collate_fn,
)


# %%
#
# We now wrap the model in a LLPRUncertaintyModel object, which will allows us
# to compute prediction rigidity metrics, which are useful for uncertainty
# quantification and model introspection.

from metatensor.torch.atomistic import ( # noqa: E402
MetatensorAtomisticModel,
ModelMetadata,
)

from metatrain.utils.llpr import LLPRUncertaintyModel # noqa: E402


llpr_model = LLPRUncertaintyModel(model)
llpr_model.compute_covariance(dataloader)
llpr_model.compute_inverse_covariance(regularizer=1e-4)

# calibrate on the same dataset for simplicity. In reality, a separate
# calibration/validation dataset should be used.
llpr_model.calibrate(dataloader)

exported_model = MetatensorAtomisticModel(
llpr_model.eval(),
ModelMetadata(),
llpr_model.capabilities,
)

# %%
#
# We can now use the model to compute the LPR for every atom in the ethanol molecule.
# To do so, we create a ModelEvaluationOptions object, which is used to request
# specific outputs from the model. In this case, we request the uncertainty in the
# atomic energy predictions.

from metatensor.torch.atomistic import ModelEvaluationOptions, ModelOutput # noqa: E402


evaluation_options = ModelEvaluationOptions(
length_unit="angstrom",
outputs={
# request the uncertainty in the atomic energy predictions
"mtt::aux::energy_uncertainty": ModelOutput(per_atom=True),
# `per_atom=False` would return the total uncertainty for the system,
# or (the inverse of) the TPR (total prediction rigidity)
# you also can request other outputs from the model here, for example:
# "energy": ModelOutput(per_atom=True),
# "mtt::aux::last_layer_features": ModelOutput(per_atom=True),
},
selected_atoms=None,
)

outputs = exported_model([ethanol_system], evaluation_options, check_consistency=False)
lpr = outputs["mtt::aux::energy_uncertainty"].block().values.detach().cpu().numpy()

# %%
#
# We can now visualize the LPR values using the `plot_atoms` function from
# ``ase.visualize.plot``.

import ase.io # noqa: E402
import matplotlib.pyplot as plt # noqa: E402
from ase.visualize.plot import plot_atoms # noqa: E402
from matplotlib.colors import LogNorm # noqa: E402


structure = ase.io.read("ethanol_reduced_100.xyz")
norm = LogNorm(vmin=min(lpr), vmax=max(lpr))
colormap = plt.get_cmap("viridis")
colors = colormap(norm(lpr))
ax = plot_atoms(structure, colors=colors, rotation="180x,0y,0z")
custom_ticks = [1e10, 2e10, 5e10, 1e11, 2e11]
cbar = plt.colorbar(
plt.cm.ScalarMappable(norm=norm, cmap=colormap),
ax=ax,
label="LPR",
ticks=custom_ticks,
)
cbar.ax.set_yticklabels([f"{tick:.0e}" for tick in custom_ticks])
cbar.minorticks_off()
plt.show()
Binary file not shown.
Loading

0 comments on commit 05dfea2

Please sign in to comment.