Skip to content

Commit

Permalink
added architecture
Browse files Browse the repository at this point in the history
  • Loading branch information
DavideTisi committed Nov 1, 2024
1 parent 0d302bc commit b293cd9
Show file tree
Hide file tree
Showing 4 changed files with 149 additions and 145 deletions.
55 changes: 28 additions & 27 deletions src/metatrain/experimental/alchemical_model/default-hypers.yaml
Original file line number Diff line number Diff line change
@@ -1,29 +1,30 @@
name: experimental.alchemical_model
architecture:
name: experimental.alchemical_model

model:
soap:
num_pseudo_species: 4
cutoff: 5.0
basis_cutoff_power_spectrum: 400
radial_basis_type: "physical"
basis_scale: 3.0
trainable_basis: true
normalize: true
contract_center_species: true
bpnn:
hidden_sizes: [32, 32]
output_size: 1
zbl: false
model:
soap:
num_pseudo_species: 4
cutoff: 5.0
basis_cutoff_power_spectrum: 400
radial_basis_type: "physical"
basis_scale: 3.0
trainable_basis: true
normalize: true
contract_center_species: true
bpnn:
hidden_sizes: [32, 32]
output_size: 1
zbl: false

training:
batch_size: 8
num_epochs: 100
learning_rate: 0.001
early_stopping_patience: 200
scheduler_patience: 100
scheduler_factor: 0.8
log_interval: 5
checkpoint_interval: 25
per_structure_targets: []
loss_weights: {}
log_mae: False
training:
batch_size: 8
num_epochs: 100
learning_rate: 0.001
early_stopping_patience: 200
scheduler_patience: 100
scheduler_factor: 0.8
log_interval: 5
checkpoint_interval: 25
per_structure_targets: []
loss_weights: {}
log_mae: False
51 changes: 26 additions & 25 deletions src/metatrain/experimental/gap/default-hypers.yaml
Original file line number Diff line number Diff line change
@@ -1,27 +1,28 @@
name: experimental.gap
architecture:
name: experimental.gap

model:
soap:
cutoff: 5.0
max_radial: 8
max_angular: 6
atomic_gaussian_width: 0.3
radial_basis:
Gto: {}
center_atom_weight: 1.0
cutoff_function:
ShiftedCosine:
width: 1.0
radial_scaling:
Willatt2018:
rate: 1.0
scale: 2.0
exponent: 7.0
krr:
degree: 2
num_sparse_points: 500
zbl: false
model:
soap:
cutoff: 5.0
max_radial: 8
max_angular: 6
atomic_gaussian_width: 0.3
radial_basis:
Gto: {}
center_atom_weight: 1.0
cutoff_function:
ShiftedCosine:
width: 1.0
radial_scaling:
Willatt2018:
rate: 1.0
scale: 2.0
exponent: 7.0
krr:
degree: 2
num_sparse_points: 500
zbl: false

training:
regularizer: 0.001
regularizer_forces: null
training:
regularizer: 0.001
regularizer_forces: null
115 changes: 58 additions & 57 deletions src/metatrain/experimental/pet/default-hypers.yaml
Original file line number Diff line number Diff line change
@@ -1,59 +1,60 @@
name: experimental.pet
architecture:
name: experimental.pet

model:
CUTOFF_DELTA: 0.2
AVERAGE_POOLING: False
TRANSFORMERS_CENTRAL_SPECIFIC: False
HEADS_CENTRAL_SPECIFIC: False
ADD_TOKEN_FIRST: True
ADD_TOKEN_SECOND: True
N_GNN_LAYERS: 3
TRANSFORMER_D_MODEL: 128
TRANSFORMER_N_HEAD: 4
TRANSFORMER_DIM_FEEDFORWARD: 512
HEAD_N_NEURONS: 128
N_TRANS_LAYERS: 3
ACTIVATION: silu
USE_LENGTH: True
USE_ONLY_LENGTH: False
R_CUT: 5.0
R_EMBEDDING_ACTIVATION: False
COMPRESS_MODE: mlp
BLEND_NEIGHBOR_SPECIES: False
AVERAGE_BOND_ENERGIES: False
USE_BOND_ENERGIES: True
USE_ADDITIONAL_SCALAR_ATTRIBUTES: False
SCALAR_ATTRIBUTES_SIZE: null
TRANSFORMER_TYPE: PostLN # PostLN or PreLN
USE_LONG_RANGE: False
K_CUT: null # should be float; only used when USE_LONG_RANGE is True
K_CUT_DELTA: null
DTYPE: float32 # float32 or float16 or bfloat16
N_TARGETS: 1
TARGET_INDEX_KEY: target_index
RESIDUAL_FACTOR: 0.5
USE_ZBL: False
model:
CUTOFF_DELTA: 0.2
AVERAGE_POOLING: False
TRANSFORMERS_CENTRAL_SPECIFIC: False
HEADS_CENTRAL_SPECIFIC: False
ADD_TOKEN_FIRST: True
ADD_TOKEN_SECOND: True
N_GNN_LAYERS: 3
TRANSFORMER_D_MODEL: 128
TRANSFORMER_N_HEAD: 4
TRANSFORMER_DIM_FEEDFORWARD: 512
HEAD_N_NEURONS: 128
N_TRANS_LAYERS: 3
ACTIVATION: silu
USE_LENGTH: True
USE_ONLY_LENGTH: False
R_CUT: 5.0
R_EMBEDDING_ACTIVATION: False
COMPRESS_MODE: mlp
BLEND_NEIGHBOR_SPECIES: False
AVERAGE_BOND_ENERGIES: False
USE_BOND_ENERGIES: True
USE_ADDITIONAL_SCALAR_ATTRIBUTES: False
SCALAR_ATTRIBUTES_SIZE: null
TRANSFORMER_TYPE: PostLN # PostLN or PreLN
USE_LONG_RANGE: False
K_CUT: null # should be float; only used when USE_LONG_RANGE is True
K_CUT_DELTA: null
DTYPE: float32 # float32 or float16 or bfloat16
N_TARGETS: 1
TARGET_INDEX_KEY: target_index
RESIDUAL_FACTOR: 0.5
USE_ZBL: False

training:
INITIAL_LR: 1e-4
EPOCH_NUM: 1000
EPOCHS_WARMUP: 50
SCHEDULER_STEP_SIZE_ATOMIC: 500000000 # structural version is called "SCHEDULER_STEP_SIZE"
GLOBAL_AUG: True
SLIDING_FACTOR: 0.7
ATOMIC_BATCH_SIZE: 850 # structural version is called "STRUCTURAL_BATCH_SIZE"
BALANCED_DATA_LOADER: False # if True, use DynamicBatchSampler from torch_geometric
MAX_TIME: 234000
ENERGY_WEIGHT: 0.1 # only used when fitting MLIP
MULTI_GPU: False
RANDOM_SEED: 0
CUDA_DETERMINISTIC: False
MODEL_TO_START_WITH: null
SUPPORT_MISSING_VALUES: False
USE_WEIGHT_DECAY: False
WEIGHT_DECAY: 0.0
DO_GRADIENT_CLIPPING: False
GRADIENT_CLIPPING_MAX_NORM: null # must be overwritten if DO_GRADIENT_CLIPPING is True
USE_SHIFT_AGNOSTIC_LOSS: False # only used when fitting general target. Primary use case: EDOS
ENERGIES_LOSS: per_structure # per_structure or per_atom
CHECKPOINT_INTERVAL: 100
training:
INITIAL_LR: 1e-4
EPOCH_NUM: 1000
EPOCHS_WARMUP: 50
SCHEDULER_STEP_SIZE_ATOMIC: 500000000 # structural version is called "SCHEDULER_STEP_SIZE"
GLOBAL_AUG: True
SLIDING_FACTOR: 0.7
ATOMIC_BATCH_SIZE: 850 # structural version is called "STRUCTURAL_BATCH_SIZE"
BALANCED_DATA_LOADER: False # if True, use DynamicBatchSampler from torch_geometric
MAX_TIME: 234000
ENERGY_WEIGHT: 0.1 # only used when fitting MLIP
MULTI_GPU: False
RANDOM_SEED: 0
CUDA_DETERMINISTIC: False
MODEL_TO_START_WITH: null
SUPPORT_MISSING_VALUES: False
USE_WEIGHT_DECAY: False
WEIGHT_DECAY: 0.0
DO_GRADIENT_CLIPPING: False
GRADIENT_CLIPPING_MAX_NORM: null # must be overwritten if DO_GRADIENT_CLIPPING is True
USE_SHIFT_AGNOSTIC_LOSS: False # only used when fitting general target. Primary use case: EDOS
ENERGIES_LOSS: per_structure # per_structure or per_atom
CHECKPOINT_INTERVAL: 100
73 changes: 37 additions & 36 deletions src/metatrain/experimental/soap_bpnn/default-hypers.yaml
Original file line number Diff line number Diff line change
@@ -1,38 +1,39 @@
name: experimental.soap_bpnn
architecture:
name: experimental.soap_bpnn

model:
soap:
cutoff: 5.0
max_radial: 8
max_angular: 6
atomic_gaussian_width: 0.3
center_atom_weight: 1.0
cutoff_function:
ShiftedCosine:
width: 1.0
radial_scaling:
Willatt2018:
rate: 1.0
scale: 2.0
exponent: 7.0
bpnn:
layernorm: true
num_hidden_layers: 2
num_neurons_per_layer: 32
zbl: false
model:
soap:
cutoff: 5.0
max_radial: 8
max_angular: 6
atomic_gaussian_width: 0.3
center_atom_weight: 1.0
cutoff_function:
ShiftedCosine:
width: 1.0
radial_scaling:
Willatt2018:
rate: 1.0
scale: 2.0
exponent: 7.0
bpnn:
layernorm: true
num_hidden_layers: 2
num_neurons_per_layer: 32
zbl: false

training:
distributed: False
distributed_port: 39591
batch_size: 8
num_epochs: 100
learning_rate: 0.001
early_stopping_patience: 200
scheduler_patience: 100
scheduler_factor: 0.8
log_interval: 5
checkpoint_interval: 25
fixed_composition_weights: {}
per_structure_targets: []
loss_weights: {}
log_mae: False
training:
distributed: False
distributed_port: 39591
batch_size: 8
num_epochs: 100
learning_rate: 0.001
early_stopping_patience: 200
scheduler_patience: 100
scheduler_factor: 0.8
log_interval: 5
checkpoint_interval: 25
fixed_composition_weights: {}
per_structure_targets: []
loss_weights: {}
log_mae: False

0 comments on commit b293cd9

Please sign in to comment.