Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add PreChippedGeoSampler for pre-chipped geospatial datasets #479

Merged
merged 4 commits into from
Apr 5, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
5 changes: 5 additions & 0 deletions docs/api/samplers.rst
Original file line number Diff line number Diff line change
Expand Up @@ -32,6 +32,11 @@ Grid Geo Sampler

.. autoclass:: GridGeoSampler

Pre-chipped Geo Sampler
^^^^^^^^^^^^^^^^^^^^^^^

.. autoclass:: PreChippedGeoSampler

Batch Samplers
--------------

Expand Down
53 changes: 52 additions & 1 deletion tests/samplers/test_single.py
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,13 @@
from torch.utils.data import DataLoader

from torchgeo.datasets import BoundingBox, GeoDataset, stack_samples
from torchgeo.samplers import GeoSampler, GridGeoSampler, RandomGeoSampler, Units
from torchgeo.samplers import (
GeoSampler,
GridGeoSampler,
PreChippedGeoSampler,
RandomGeoSampler,
Units,
)


class CustomGeoSampler(GeoSampler):
Expand Down Expand Up @@ -189,3 +195,48 @@ def test_dataloader(
)
for _ in dl:
continue


class TestPreChippedGeoSampler:
@pytest.fixture(scope="class")
def dataset(self) -> CustomGeoDataset:
ds = CustomGeoDataset()
ds.index.insert(0, (0, 20, 0, 20, 0, 20))
ds.index.insert(1, (0, 30, 0, 30, 0, 30))
return ds

@pytest.fixture(scope="function")
def sampler(self, dataset: CustomGeoDataset) -> PreChippedGeoSampler:
return PreChippedGeoSampler(dataset, shuffle=True)

def test_iter(self, sampler: GridGeoSampler) -> None:
for _ in sampler:
continue

def test_len(self, sampler: GridGeoSampler) -> None:
assert len(sampler) == 2

def test_roi(self, dataset: CustomGeoDataset) -> None:
roi = BoundingBox(5, 15, 5, 15, 5, 15)
sampler = PreChippedGeoSampler(dataset, roi=roi)
for query in sampler:
assert query == roi

def test_point_data(self) -> None:
ds = CustomGeoDataset()
ds.index.insert(0, (0, 0, 0, 0, 0, 0))
ds.index.insert(1, (1, 1, 1, 1, 1, 1))
sampler = PreChippedGeoSampler(ds)
for _ in sampler:
continue

@pytest.mark.slow
@pytest.mark.parametrize("num_workers", [0, 1, 2])
def test_dataloader(
self, dataset: CustomGeoDataset, sampler: PreChippedGeoSampler, num_workers: int
) -> None:
dl = DataLoader(
dataset, sampler=sampler, num_workers=num_workers, collate_fn=stack_samples
)
for _ in dl:
continue
3 changes: 2 additions & 1 deletion torchgeo/samplers/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,11 +5,12 @@

from .batch import BatchGeoSampler, RandomBatchGeoSampler
from .constants import Units
from .single import GeoSampler, GridGeoSampler, RandomGeoSampler
from .single import GeoSampler, GridGeoSampler, PreChippedGeoSampler, RandomGeoSampler

__all__ = (
# Samplers
"GridGeoSampler",
"PreChippedGeoSampler",
"RandomGeoSampler",
# Batch samplers
"RandomBatchGeoSampler",
Expand Down
62 changes: 61 additions & 1 deletion torchgeo/samplers/single.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,8 +5,9 @@

import abc
import random
from typing import Iterator, Optional, Tuple, Union
from typing import Callable, Iterable, Iterator, Optional, Tuple, Union

import torch
from rtree.index import Index, Property
from torch.utils.data import Sampler

Expand Down Expand Up @@ -240,3 +241,62 @@ def __len__(self) -> int:
number of patches that will be sampled
"""
return self.length


class PreChippedGeoSampler(GeoSampler):
"""Samples entire files at a time.

This is particularly useful for datasets that contain geospatial metadata
and subclass :class:`~torchgeo.datasets.GeoDataset` but have already been
pre-processed into :term:`chips <chip>`.

This sampler should not be used with :class:`~torchgeo.datasets.VisionDataset`.
You may encounter problems when using an :term:`ROI <region of interest (ROI)>`
that partially intersects with one of the file bounding boxes, when using an
:class:`~torchgeo.datasets.IntersectionDataset`, or when each file is in a
different CRS. These issues can be solved by adding padding.
"""

def __init__(
self,
dataset: GeoDataset,
roi: Optional[BoundingBox] = None,
shuffle: bool = False,
) -> None:
"""Initialize a new Sampler instance.

Args:
dataset: dataset to index from
roi: region of interest to sample from (minx, maxx, miny, maxy, mint, maxt)
(defaults to the bounds of ``dataset.index``)
shuffle: if True, reshuffle data at every epoch

.. versionadded:: 0.3
"""
super().__init__(dataset, roi)
self.shuffle = shuffle

self.hits = []
for hit in self.index.intersection(tuple(self.roi), objects=True):
self.hits.append(hit)

def __iter__(self) -> Iterator[BoundingBox]:
"""Return the index of a dataset.

Returns:
(minx, maxx, miny, maxy, mint, maxt) coordinates to index a dataset
"""
generator: Callable[[int], Iterable[int]] = range
if self.shuffle:
generator = torch.randperm

for idx in generator(len(self)):
yield BoundingBox(*self.hits[idx].bounds)

def __len__(self) -> int:
"""Return the number of samples over the ROI.

Returns:
number of patches that will be sampled
"""
return len(self.hits)