-
Notifications
You must be signed in to change notification settings - Fork 266
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Co-authored-by: Sebastian Schunke <[email protected]>
- Loading branch information
Showing
4 changed files
with
415 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,191 @@ | ||
#include <mitsuba/core/bbox.h> | ||
#include <mitsuba/core/bsphere.h> | ||
#include <mitsuba/core/math.h> | ||
#include <mitsuba/core/properties.h> | ||
#include <mitsuba/core/transform.h> | ||
#include <mitsuba/core/warp.h> | ||
#include <mitsuba/render/scene.h> | ||
#include <mitsuba/render/sensor.h> | ||
|
||
NAMESPACE_BEGIN(mitsuba) | ||
|
||
/**! | ||
.. _sensor-distant: | ||
Distant directional sensor (:monosp:`distant`) | ||
---------------------------------------------- | ||
.. pluginparameters:: | ||
* - to_world | ||
- |transform| | ||
- Sensor-to-world transformation matrix. | ||
* - direction | ||
- |vector| | ||
- Alternative (and exclusive) to `to_world`. Direction from which the | ||
sensor will be recording in world coordinates. | ||
* - target | ||
- |point| | ||
- *Optional.* Point (in world coordinates) to which sampled rays will be | ||
cast. Useful for one-dimensional scenes. If unset, rays will be cast | ||
uniformly over the entire scene. | ||
This sensor plugin implements a distant directional sensor which records | ||
radiation leaving the scene in a given direction. If the ``target`` parameter | ||
is not set, rays cast by the sensor will be distributed uniformly on the cross | ||
section of the scene's bounding sphere. | ||
*/ | ||
|
||
MTS_VARIANT class DistantSensor final : public Sensor<Float, Spectrum> { | ||
public: | ||
MTS_IMPORT_BASE(Sensor, m_world_transform, m_needs_sample_3, m_film) | ||
MTS_IMPORT_TYPES(Scene) | ||
|
||
DistantSensor(const Properties &props) : Base(props) { | ||
/* Until `set_scene` is called, we have no information | ||
about the scene and default to the unit bounding sphere. */ | ||
m_bsphere = ScalarBoundingSphere3f(ScalarPoint3f(0.f), 1.f); | ||
|
||
if (props.has_property("direction")) { | ||
if (props.has_property("to_world")) | ||
Throw("Only one of the parameters 'direction' and 'to_world' " | ||
"can be specified at the same time!'"); | ||
|
||
ScalarVector3f direction(normalize(props.vector3f("direction"))); | ||
auto [up, unused] = coordinate_system(direction); | ||
|
||
m_world_transform = | ||
new AnimatedTransform(ScalarTransform4f::look_at( | ||
ScalarPoint3f(0.0f), ScalarPoint3f(direction), up)); | ||
} | ||
|
||
if (props.has_property("target")) { | ||
m_target = props.point3f("target"); | ||
m_has_target = true; | ||
Log(Debug, "Targeting point %s", m_target); | ||
} else { | ||
m_has_target = false; | ||
} | ||
|
||
if (m_film->size() != ScalarPoint2i(1, 1)) | ||
Throw("This sensor only supports films of size 1x1 Pixels!"); | ||
|
||
if (m_film->reconstruction_filter()->radius() > | ||
0.5f + math::RayEpsilon<Float>) | ||
Log(Warn, "This sensor should be used with a reconstruction filter " | ||
"with a radius of 0.5 or lower (e.g. default box)"); | ||
|
||
m_needs_sample_3 = false; | ||
} | ||
|
||
void set_scene(const Scene *scene) override { | ||
m_bsphere = scene->bbox().bounding_sphere(); | ||
m_bsphere.radius = | ||
max(math::RayEpsilon<Float>, | ||
m_bsphere.radius * (1.f + math::RayEpsilon<Float>) ); | ||
} | ||
|
||
std::pair<Ray3f, Spectrum> sample_ray(Float time, Float wavelength_sample, | ||
const Point2f &spatial_sample, | ||
const Point2f & /*direction_sample*/, | ||
Mask active) const override { | ||
MTS_MASKED_FUNCTION(ProfilerPhase::EndpointSampleRay, active); | ||
Ray3f ray; | ||
ray.time = time; | ||
|
||
// 1. Sample spectrum | ||
auto [wavelengths, wav_weight] = | ||
sample_wavelength<Float, Spectrum>(wavelength_sample); | ||
ray.wavelengths = wavelengths; | ||
|
||
// 2. Set ray direction | ||
auto trafo = m_world_transform->eval(time, active); | ||
ray.d = trafo.transform_affine(Vector3f{ 0.f, 0.f, 1.f }); | ||
|
||
// 3. Sample ray origin | ||
if (!m_has_target) { | ||
// If no target point is defined, sample a target point on the | ||
// bounding sphere's cross section | ||
Point2f offset = | ||
warp::square_to_uniform_disk_concentric(spatial_sample); | ||
Vector3f perp_offset = | ||
trafo.transform_affine(Vector3f{ offset.x(), offset.y(), 0.f }); | ||
ray.o = m_bsphere.center + (perp_offset - ray.d) * m_bsphere.radius; | ||
} else { | ||
ray.o = m_target - 2.f * ray.d * m_bsphere.radius; | ||
} | ||
|
||
ray.update(); | ||
return std::make_pair( | ||
ray, m_has_target | ||
? wav_weight | ||
: wav_weight * (math::Pi<Float> * sqr(m_bsphere.radius))); | ||
} | ||
|
||
std::pair<RayDifferential3f, Spectrum> sample_ray_differential( | ||
Float time, Float wavelength_sample, const Point2f &spatial_sample, | ||
const Point2f & /*direction_sample*/, Mask active) const override { | ||
MTS_MASKED_FUNCTION(ProfilerPhase::EndpointSampleRay, active); | ||
RayDifferential3f ray; | ||
ray.time = time; | ||
|
||
// 1. Sample spectrum | ||
auto [wavelengths, wav_weight] = | ||
sample_wavelength<Float, Spectrum>(wavelength_sample); | ||
ray.wavelengths = wavelengths; | ||
|
||
// 2. Set ray direction | ||
auto trafo = m_world_transform->eval(time, active); | ||
ray.d = trafo.transform_affine(Vector3f{ 0.f, 0.f, 1.f }); | ||
|
||
// 3. Sample ray origin | ||
if (!m_has_target) { | ||
// If no target point is defined, sample a target point on the | ||
// bounding sphere's cross section | ||
Point2f offset = | ||
warp::square_to_uniform_disk_concentric(spatial_sample); | ||
Vector3f perp_offset = | ||
trafo.transform_affine(Vector3f{ offset.x(), offset.y(), 0.f }); | ||
ray.o = m_bsphere.center + (perp_offset - ray.d) * m_bsphere.radius; | ||
} else { | ||
ray.o = m_target - 2.f * ray.d * m_bsphere.radius; | ||
} | ||
|
||
// 4. Set differentials; since the film size is always 1x1, we don't | ||
// have differentials | ||
ray.has_differentials = false; | ||
|
||
ray.update(); | ||
return std::make_pair( | ||
ray, m_has_target | ||
? wav_weight | ||
: wav_weight * (math::Pi<Float> * sqr(m_bsphere.radius))); | ||
} | ||
|
||
/// This sensor does not occupy any particular region of space, return an | ||
/// invalid bounding box | ||
ScalarBoundingBox3f bbox() const override { return ScalarBoundingBox3f(); } | ||
|
||
std::string to_string() const override { | ||
std::ostringstream oss; | ||
oss << "DistantSensor[" << std::endl | ||
<< " world_transform = " << m_world_transform << "," << std::endl | ||
<< " bsphere = " << m_bsphere << "," << std::endl | ||
<< " film = " << m_film << "," << std::endl | ||
<< "]"; | ||
return oss.str(); | ||
} | ||
|
||
MTS_DECLARE_CLASS() | ||
|
||
protected: | ||
ScalarBoundingSphere3f m_bsphere; | ||
ScalarPoint3f m_target; | ||
bool m_has_target; | ||
}; | ||
|
||
MTS_IMPLEMENT_CLASS_VARIANT(DistantSensor, Sensor) | ||
MTS_EXPORT_PLUGIN(DistantSensor, "DistantSensor"); | ||
NAMESPACE_END(mitsuba) |
Oops, something went wrong.