Releases: modelscope/data-juicer
Release v0.2.0: Multimodal Support & DJ-SORA
New Features
- 🚀 We introduce DJ-SORA to provide open large-scale, high-quality datasets for SORA-like models. #227
- 🚀 We introduce hundreds of dedicated video, image, audio, text, and other multi-modal data processing operators and tools.
- 💥 Our paper has been accepted by SIGMOD'24 industrial track! #211
- 💥 "BetterMixture" — Our second data-centric LLM competition has kicked off and is about to end soon. #174
New OPs
Multimodal
video_frames_text_similarity_filter
: keeps samples whose similarities between sampled video frame images and text within a specific range. #227video_tagging_from_frames_mapper
: generates video tags from frames extracted from the video. #227video_tagging_from_audio_mapper
: generates video tags from audio streams extracted from videos. #227video_captioning_from_video_mapper
: generates captions from frame images extracted from video to augment datasets. #227video_captioning_from_audio_mapper
: captions a video according to its audio streams. #227image_captioning_mapper
: generates captions based on a language model and the image. This OP will increase the number of samples in the dataset. #131 #191 #227image_captioning_from_gpt4v_mapper
: generates captions based on GPT-4-Vision and the image. This OP will increase the number of samples in the dataset. #214 #227image_diffusion_mapper
: generates and augments the images based on the Stable Diffusion model and their original images and texts. This OP will increase the number of samples in the dataset. #200
Video
Filter
video_duration_filter
: keeps samples whose videos' durations are within a specified range. #227video_aspect_ratio_filter
: filters samples according to the aspect ratios of videos (a fraction of width by height, r=w/h) in them. #227video_resolution_filter
: filters samples according to the resolution of videos in them. #227video_ocr_area_ratio_filter
: keeps samples whose detected text area ratios for specified frames in the video are within a specified range. #227video_aesthetics_filter
: filters samples according to the aesthetics score of frame images extracted from videos. #227video_motion_score_filter
: keeps samples with video motion scores within a specific range. #227
Mapper
video_split_by_scene_mapper
: splits videos into scene clips. #227video_split_by_duration_mapper
: splits videos by specified duration interval. #227video_split_by_key_frame_mapper
: splits videos by their keyframes. #227video_resize_aspect_ratio_mapper
: resizes aspect ratios of videos (a fraction of width by height, r=w/h) to a specified range. #227video_resize_resolution_mapper
: maps videos to ones with a given resolution range. #227video_ffmpeg_wrapped_mapper
: a wrapper to apply ffmpeg to video data more conveniently. #227
Deduplicator
video_deduplicator
: deduplicates samples at document-level using exact matching of videos between documents. #227
Audio
audio_duration_filter
: keeps samples whose audios' durations are within a specified range. #177audio_size_filter
: keeps samples whose audios' sizes are within a specified range. #184audio_nmf_snr_filter
: keeps samples whose audios' Signal Noise Ratios (computed based on Non-Negative Matrix Factorization algorithm) are within a specified range. #189audio_ffmpeg_wrapped_mapper
: a wrapper to apply ffmpeg to audio data more conveniently. #227
Image
image_blur_mapper
: adds random noises to images to blur them. #180image_aesthetics_filter
: filter samples according to the aesthetics scores of images. #227
Document Updates
- "Bad" Data Exhibition EN ZH: shows how Data-Juicer finds those "bad" data and how they look like.
- Awesome LLM Data EN: a collection of awesome LLM datasets with fine-grained tags.
- Developer Guide enhancement EN ZH: adds guides on how to accelerate the models in your OP with GPUs and how to implement a batched OP for sample augmentation. #203 #220
- OP Insight Visualization Demo code: adds a demo to visualize how each OP works.
Bugs Fixed
- Fix stats computation error in the ray mode due to the inappropriate initialization method. #173
- Fix the bug that some images will be lost when converting their paths to absolute paths. #178
- Fix the dependency problems of OPs who depend on other OPs. #181
- Fix the bug that the
predict.py
tool gets stuck on the help page. #183 - Fix
face_area_filter
: constrains the detection coordinates within the image. #202 - Fix MMC4 conversion tools: resolves the situation where multiple images match the same sentence. #195
- Fix or update invalid links in Data-Juicer. #201 #219
Others
- Optimize the model management module. #196 #227
- Optimize the unit test actions. #195 #196 #216 #227
- Optimize the multiprocessing strategy and model inference efficiency could be increased due to GPU support. #203 #217 #222 #227
- Update the docker image with JDK. #208
- Support more multimodal (video) dataset conversion tools: #227
- InternVid: 234M video-caption data
- Youku-mPLUG: 36TB video-caption data
- Video-ChatGPT: 100k video-instruction data
- Optimize the generated multimodal data storage. #227
- Support running data-juicer process jobs on Aliyun PAI-DLC. #227
- Better support for multi-machine distributed data processing in Ray mode. #227
Acknowledgment
Here we thank public contributors for their PRs to make Data-Juicer better!
Release v0.1.3: support more Python versions; support multimodal data; more OPs; bugs fixed
New Features
- Data-Juicer now supports Python3.7-3.10!
- We released a pybind version of simhash-py library named
simhash-pybind
to solve the Python version limitation problem. - We test several version-depend third-party libraries (e.g. dill, kenlm, ...) and validate their availability on different Python versions.
- We released a pybind version of simhash-py library named
- Multimodal dataset analysis and processing are now supported. #64 #91 #95 #106
- A novel intermediate multimodal sample format: using some special tokens to split text chunks and represent non-text information.
- Several dataset format conversion tools for popular multimodal datasets: LLaVA, MMC4, WavCaps, ......
- Lots of multimodal OPs are also released: see categories Image and Multimodal in the section New OPs below.
- Auto-HPO tools are now available, which can help users find better hyperparameters for OPs according to specified object functions or with simple 3-sigma rules only. #65 #140
- Some content cleaning mappers (e.g. email, IP, ...) now support replacing regex patterns with specified strings, not just with empty ones. Additionally, a general version OP is implemented as a new OP
replace_content_mapper
. #143 - Some collectors, metrics, and drawing functions are added to the analysis module to help users measure the token distribution of a single dataset or distribution difference between different datasets. #160
New OPs
Text
chinese_convert_mapper
: converts Chinese between Traditional Chinese, Simplified Chinese, and Japanese Kanji (by opencc) #51remove_non_chinese_character_mapper
: removes non-Chinese characters in text samples. #51text_action_filter
: keeps samples containing action verbs in their texts. #122text_entity_dependency_filter
: keeps samples containing entity nouns related to other tokens in the dependency tree of the texts. #122replace_content_mapper
: replaces all content in the text that matches a specific regular expression pattern with a designated replacement string. #143remove_repeat_sentences_mapper
: Remove repeated sentences in the text. #149
Image
image_shape_filter
: keeps samples containing images with widths and heights within the specified ranges. #74image_aspect_ratio_filter
: keeps samples containing images with aspect ratios (w/h) within the specified range. #64image_size_filter
: keeps samples containing images whose sizes in bytes are within the specified range. #73face_area_filter
: keeps samples containing images with face area ratios within the specified range. #110image_deduplicator
: deduplicates samples at document-level using exact matching of images between documents. #72
Multimodal
image_text_similarity_filter
: keeps samples with image-text feature cosine similarity within the specified range based on a CLIP model. #69image_text_matching_filter
: keeps samples with image-text classification matching scores within the specified range based on a BLIP model. #100phrase_grounding_recall_filter
: keeps samples whose locating/grounding recalls of phrases extracted from text in the images are within a specified range. #139
Bugs fixed
- Fix the
pandas==2.0.0 fsspec==2023.3.0
to avoid unexpected errors from third-party dependencies. #38 #42 - Fix the bug when OPs
nlpaug_en_mapper
andnlpcda_zh_mapper
generate indefinite numbers of augmented samples. #76 - Fix the bug of
maximum_line_length_filter
might generate unaligned types of stats (int v.s. float), which leads to an error when processing datasets. #147 - Fix the bug of missing attribute dataset_dir when the input dataset path is remote or a mixture of several datasets. #155 #157
- Fix the bug of commandline arguments parsing error in some cases. #108 #165
- Store simhash value as string type to avoid errors from PyArrow. #168 #170
Others
- Dependency importing optimization: only require and import some dependencies when using. #35 #82
- Release demos and datasets on HuggingFace, and release models trained with our refined datasets on both ModelScope and HuggingFace. #42 #54
- Optimize the cache directory selection logic. #43
- Support limiting the number of samples when mixing datasets. #86
- Avoid extra unnecessary model preparation when enabling tokenization in some OPs. #99
- OP
language_id_score_filter
supports keeping samples in multiple languages now. #125 #151
Acknowledgement
Here we thank public contributors for their PRs to make Data-Juicer better!
- @JONGSKY helps to remove some unnecessary code. #85
- @xuruidong helps to fix several broken links in the README doc. #142
Release v0.1.2: more core functions are available now.
New OPs
nlpaug_en_mapper
: simple data augmentation using nlpaug library for English corpus. #17nlpcda_zh_mapper
: simple data augmentation using nlpcda library for Chinese corpus. #17token_num_filter
: filter out samples by the number of tokens in them. HF tokenizers are supported. #24
New features
- OP Fusion #14
- Now Filters that share the same contextual variables can be fused into one OP, saving at most 25% time when processing datasets.
- Cache management #19
- Cache management works now for our Data-Juicer due to the new serialization method being applied.
- Cache compression is supported: it will automatically compress caches when they are useless and decompress them if needed, which saves at most 50% disk space.
- Distributed data processing with Ray is supported now. #21
- Config sys optimization:
Others
- Replace original string constants with constant enums. #13
- Expand the checkpoint protection range to cover the exporting process. #14
- Remove extra intermediate variables storage in
document_simhash_deduplicator
to save more memory. #14 - Docs updates. #15 #16
- PyPi package is available. You can install data-juicer by
pip install py-data-juicer
now. #23 - Docker building is available now. The official docker image for Docker Hub is in progress. #23
- Deploy the unit tests for Data-Juicer. #29
Release v0.1.0, the first internal version for open-source
Summarization - Table of Contents
- Data-Juicer: A Data-Centric Text Processing System for Large Language Models
- Table of Contents
- Features
- Prerequisites
- Installation
- Quick Start
- Data Processing
- Data Analysis
- Data Visualization
- Build Up Config Files
- Preprocess raw data (Optional)
- Documentation | 文档
- Data Recipes
- Demos
- License
- Contributing
- References
Features
-
Broad Range of Operators: Equipped with 50+ core operators (OPs), including Formatters, Mappers, Filters, Deduplicators, and beyond.
-
Specialized Toolkits: Feature-rich specialized toolkits such as Text Quality Classifier, Dataset Splitter, Analysers, Evaluators, and more that elevate your dataset handling capabilities.
-
Systematic & Reusable: Empowering users with a systematic library of reusable config recipes and OPs, designed to function independently of specific datasets, models, or tasks.
-
Data-in-the-loop: Allowing detailed data analyses with an automated report generation feature for a deeper understanding of your dataset. Coupled with real-time multi-dimension automatic evaluation capabilities, it supports a feedback loop at multiple stages in the LLM development process.
-
Comprehensive Processing Recipes: Offering tens of pre-built data processing recipes for pre-training, SFT, en, zh, and more scenarios.
-
User-Friendly Experience: Designed for simplicity, with comprehensive documentation, easy start guides and demo configs, and intuitive configuration with simple adding/removing OPs from existing configs.
-
Flexible & Extensible: Accommodating most types of data formats (e.g., jsonl, parquet, csv, ...) and allowing flexible combinations of OPs. Feel free to implement your own OPs for customizable data processing.
-
Enhanced Efficiency: Providing a speedy data processing pipeline requiring less memory, optimized for maximum productivity.