- Update config.yaml
- Update secrets.yaml [Optional]
- Update params.yaml
- Update the entity
- Update the configuration manager in src config
- Update the components
- Update the pipeline
- Update the main.py
- Update the dvc.yaml
- app.py
Clone the repository
https://github.com/krishnaik06/Kidney-Disease-Classification-Deep-Learning-Project
conda create -n cnncls python=3.8 -y
conda activate cnncls
pip install -r requirements.txt
# Finally run the following command
python app.py
Now,
open up you local host and port
- mlflow ui
MLFLOW_TRACKING_URI=https://dagshub.com/entbappy/Kidney-Disease-Classification-MLflow-DVC.mlflow
MLFLOW_TRACKING_USERNAME=entbappy
MLFLOW_TRACKING_PASSWORD=6824692c47a369aa6f9eac5b10041d5c8edbcef0
python script.py
Run this to export as env variables:
export MLFLOW_TRACKING_URI=https://dagshub.com/entbappy/Kidney-Disease-Classification-MLflow-DVC.mlflow
export MLFLOW_TRACKING_USERNAME=entbappy
export MLFLOW_TRACKING_PASSWORD=6824692c47a369aa6f9eac5b10041d5c8edbcef0
- dvc init
- dvc repro
- dvc dag
MLflow
- Its Production Grade
- Trace all of your expriements
- Logging & taging your model
DVC
- Its very lite weight for POC only
- lite weight expriements tracker
- It can perform Orchestration (Creating Pipelines)