Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

EcRecover #3633

Open
wants to merge 21 commits into
base: HF_Echidna
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 19 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
177 changes: 134 additions & 43 deletions src/Neo/Cryptography/Crypto.cs
Original file line number Diff line number Diff line change
Expand Up @@ -10,10 +10,14 @@
// modifications are permitted.

using Neo.IO.Caching;
using Org.BouncyCastle.Asn1;
using Org.BouncyCastle.Asn1.X9;
using Org.BouncyCastle.Crypto.Parameters;
using Org.BouncyCastle.Math;
using Org.BouncyCastle.Utilities.Encoders;
using System;
using System.Collections.Generic;
using System.Linq;
using System.Runtime.InteropServices;
using System.Security.Cryptography;

Expand All @@ -24,21 +28,18 @@ namespace Neo.Cryptography
/// </summary>
public static class Crypto
{
private static readonly ECDsaCache CacheECDsa = new();
private static readonly bool IsOSX = RuntimeInformation.IsOSPlatform(OSPlatform.OSX);
private static readonly ECCurve secP256k1 = ECCurve.CreateFromFriendlyName("secP256k1");
private static readonly X9ECParameters bouncySecp256k1 = Org.BouncyCastle.Asn1.Sec.SecNamedCurves.GetByName("secp256k1");
private static readonly X9ECParameters bouncySecp256r1 = Org.BouncyCastle.Asn1.Sec.SecNamedCurves.GetByName("secp256r1");

/// <summary>
/// Holds domain parameters for Secp256r1 elliptic curve.
/// 64 bytes ECDSA signature
/// </summary>
private static readonly ECDomainParameters secp256r1DomainParams = new ECDomainParameters(bouncySecp256r1.Curve, bouncySecp256r1.G, bouncySecp256r1.N, bouncySecp256r1.H);
private const int SignatureLength = 64;

/// <summary>
/// Holds domain parameters for Secp256k1 elliptic curve.
/// </summary>
private static readonly ECDomainParameters secp256k1DomainParams = new ECDomainParameters(bouncySecp256k1.Curve, bouncySecp256k1.G, bouncySecp256k1.N, bouncySecp256k1.H);
private static readonly BigInteger s_prime = new(1,
Hex.Decode("FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEFFFFFC2F"));

private static readonly ECDsaCache CacheECDsa = new();
private static readonly bool IsOSX = RuntimeInformation.IsOSPlatform(OSPlatform.OSX);
private static readonly ECCurve secP256k1 = ECCurve.CreateFromFriendlyName("secP256k1");

/// <summary>
/// Calculates the 160-bit hash value of the specified message.
Expand Down Expand Up @@ -68,17 +69,14 @@ public static byte[] Hash256(ReadOnlySpan<byte> message)
/// <param name="ecCurve">The <see cref="ECC.ECCurve"/> curve of the signature, default is <see cref="ECC.ECCurve.Secp256r1"/>.</param>
/// <param name="hasher">The hash algorithm to hash the message, default is SHA256.</param>
/// <returns>The ECDSA signature for the specified message.</returns>
public static byte[] Sign(byte[] message, byte[] priKey, ECC.ECCurve ecCurve = null, Hasher hasher = Hasher.SHA256)
public static byte[] Sign(byte[] message, byte[] priKey, ECC.ECCurve ecCurve = null,
Hasher hasher = Hasher.SHA256)
{
if (hasher == Hasher.Keccak256 || (IsOSX && ecCurve == ECC.ECCurve.Secp256k1))
{
var domain =
ecCurve == null || ecCurve == ECC.ECCurve.Secp256r1 ? secp256r1DomainParams :
ecCurve == ECC.ECCurve.Secp256k1 ? secp256k1DomainParams :
throw new NotSupportedException(nameof(ecCurve));
var signer = new Org.BouncyCastle.Crypto.Signers.ECDsaSigner();
var privateKey = new BigInteger(1, priKey);
var priKeyParameters = new ECPrivateKeyParameters(privateKey, domain);
var priKeyParameters = new ECPrivateKeyParameters(privateKey, ecCurve.BouncyCastleDomainParams);
signer.Init(true, priKeyParameters);
var messageHash =
hasher == Hasher.SHA256 ? message.Sha256() :
Expand All @@ -101,17 +99,120 @@ public static byte[] Sign(byte[] message, byte[] priKey, ECC.ECCurve ecCurve = n
ecCurve == ECC.ECCurve.Secp256k1 ? secP256k1 :
throw new NotSupportedException();

using var ecdsa = ECDsa.Create(new ECParameters
{
Curve = curve,
D = priKey,
});
using var ecdsa = ECDsa.Create(new ECParameters { Curve = curve, D = priKey, });
var hashAlg =
hasher == Hasher.SHA256 ? HashAlgorithmName.SHA256 :
throw new NotSupportedException(nameof(hasher));
hasher == Hasher.SHA256 ? HashAlgorithmName.SHA256 : throw new NotSupportedException(nameof(hasher));
return ecdsa.SignData(message, hashAlg);
}


shargon marked this conversation as resolved.
Show resolved Hide resolved
/// <summary>
/// Recovers the public key from a signature and message hash.
/// </summary>
/// <param name="signature">Signature, either 65 bytes (r[32] || s[32] || v[1]) or
/// 64 bytes in “compact” form (r[32] || yParityAndS[32]).</param>
/// <param name="hash">32-byte message hash</param>
/// <returns>The recovered public key</returns>
/// <exception cref="ArgumentException">Thrown if signature or hash is invalid</exception>
public static ECC.ECPoint ECRecover(byte[] signature, byte[] hash)
{
if (signature.Length != 65 && signature.Length != 64)
throw new ArgumentException("Signature must be 65 or 64 bytes", nameof(signature));
if (hash is not { Length: 32 })
throw new ArgumentException("Message hash must be 32 bytes", nameof(hash));

try
{
// Extract (r, s) and compute integer recId
BigInteger r, s;
int recId;

if (signature.Length == 65)
{
// Format: r[32] || s[32] || v[1]
r = new BigInteger(1, [.. signature.Take(32)]);
s = new BigInteger(1, [.. signature.Skip(32).Take(32)]);

// v could be 0..3 or 27..30 (Ethereum style).
var v = signature[64];
recId = v >= 27 ? v - 27 : v; // normalize
if (recId < 0 || recId > 3)
throw new ArgumentException("Recovery value must be in [0..3] after normalization.", nameof(signature));
}
else
{
// 64 bytes “compact” format: r[32] || yParityAndS[32]
// yParity is fused into the top bit of s.

r = new BigInteger(1, [.. signature.Take(32)]);
var yParityAndS = new BigInteger(1, signature.Skip(32).ToArray());

// Mask out top bit to get s
var mask = BigInteger.One.ShiftLeft(255).Subtract(BigInteger.One);
s = yParityAndS.And(mask);

// Extract yParity (0 or 1)
bool yParity = yParityAndS.TestBit(255);

// For “compact,” map parity to recId in [0..1].
// For typical usage, recId in {0,1} is enough:
recId = yParity ? 1 : 0;
}

// Decompose recId into i = recId >> 1 and yBit = recId & 1
int iPart = recId >> 1; // usually 0..1
bool yBit = (recId & 1) == 1;

// BouncyCastle curve constants
var n = ECC.ECCurve.Secp256k1.BouncyCastleCurve.N;
var e = new BigInteger(1, hash);

// eInv = -e mod n
var eInv = BigInteger.Zero.Subtract(e).Mod(n);
// rInv = (r^-1) mod n
var rInv = r.ModInverse(n);
// srInv = (s * r^-1) mod n
var srInv = rInv.Multiply(s).Mod(n);
// eInvrInv = (eInv * r^-1) mod n
var eInvrInv = rInv.Multiply(eInv).Mod(n);

// x = r + iPart * n
var x = r.Add(BigInteger.ValueOf(iPart).Multiply(n));
// Verify x is within the curve prime
if (x.CompareTo(s_prime) >= 0)
throw new ArgumentException("x is out of range of the secp256k1 prime.", nameof(signature));

// Decompress to get R
var decompressedRKey = DecompressKey(ECC.ECCurve.Secp256k1.BouncyCastleCurve.Curve, x, yBit);
// Check that R is on curve
if (!decompressedRKey.Multiply(n).IsInfinity)
throw new ArgumentException("R point is not valid on this curve.", nameof(signature));

// Q = (eInv * G) + (srInv * R)
var q = Org.BouncyCastle.Math.EC.ECAlgorithms.SumOfTwoMultiplies(
ECC.ECCurve.Secp256k1.BouncyCastleCurve.G, eInvrInv,
decompressedRKey, srInv);

return ECC.ECPoint.FromBytes(q.Normalize().GetEncoded(false), ECC.ECCurve.Secp256k1);
}
catch (ArgumentException)
{
throw;
}
catch (Exception ex)
{
throw new ArgumentException("Invalid signature parameters", nameof(signature), ex);
}
}

private static Org.BouncyCastle.Math.EC.ECPoint DecompressKey(
Org.BouncyCastle.Math.EC.ECCurve curve, BigInteger xBN, bool yBit)
{
var compEnc = X9IntegerConverter.IntegerToBytes(xBN, 1 + X9IntegerConverter.GetByteLength(curve));
compEnc[0] = (byte)(yBit ? 0x03 : 0x02);
return curve.DecodePoint(compEnc);
}

/// <summary>
/// Verifies that a digital signature is appropriate for the provided key, message and hash algorithm.
/// </summary>
Expand All @@ -120,24 +221,17 @@ public static byte[] Sign(byte[] message, byte[] priKey, ECC.ECCurve ecCurve = n
/// <param name="pubkey">The public key to be used.</param>
/// <param name="hasher">The hash algorithm to be used to hash the message, the default is SHA256.</param>
/// <returns><see langword="true"/> if the signature is valid; otherwise, <see langword="false"/>.</returns>
public static bool VerifySignature(ReadOnlySpan<byte> message, ReadOnlySpan<byte> signature, ECC.ECPoint pubkey, Hasher hasher = Hasher.SHA256)
public static bool VerifySignature(ReadOnlySpan<byte> message, ReadOnlySpan<byte> signature, ECC.ECPoint pubkey,
Hasher hasher = Hasher.SHA256)
{
if (signature.Length != 64) return false;

if (hasher == Hasher.Keccak256 || (IsOSX && pubkey.Curve == ECC.ECCurve.Secp256k1))
{
var domain =
pubkey.Curve == ECC.ECCurve.Secp256r1 ? secp256r1DomainParams :
pubkey.Curve == ECC.ECCurve.Secp256k1 ? secp256k1DomainParams :
throw new NotSupportedException(nameof(pubkey.Curve));
var curve =
pubkey.Curve == ECC.ECCurve.Secp256r1 ? bouncySecp256r1.Curve :
bouncySecp256k1.Curve;

var point = curve.CreatePoint(
var point = pubkey.Curve.BouncyCastleCurve.Curve.CreatePoint(
new BigInteger(pubkey.X.Value.ToString()),
new BigInteger(pubkey.Y.Value.ToString()));
var pubKey = new ECPublicKeyParameters("ECDSA", point, domain);
var pubKey = new ECPublicKeyParameters("ECDSA", point, pubkey.Curve.BouncyCastleDomainParams);
var signer = new Org.BouncyCastle.Crypto.Signers.ECDsaSigner();
signer.Init(false, pubKey);

Expand All @@ -155,8 +249,7 @@ public static bool VerifySignature(ReadOnlySpan<byte> message, ReadOnlySpan<byte

var ecdsa = CreateECDsa(pubkey);
var hashAlg =
hasher == Hasher.SHA256 ? HashAlgorithmName.SHA256 :
throw new NotSupportedException(nameof(hasher));
hasher == Hasher.SHA256 ? HashAlgorithmName.SHA256 : throw new NotSupportedException(nameof(hasher));
return ecdsa.VerifyData(message, signature, hashAlg);
}

Expand All @@ -172,6 +265,7 @@ public static ECDsa CreateECDsa(ECC.ECPoint pubkey)
{
return cache.Value;
}

var curve =
pubkey.Curve == ECC.ECCurve.Secp256r1 ? ECCurve.NamedCurves.nistP256 :
pubkey.Curve == ECC.ECCurve.Secp256k1 ? secP256k1 :
Expand All @@ -180,11 +274,7 @@ public static ECDsa CreateECDsa(ECC.ECPoint pubkey)
var ecdsa = ECDsa.Create(new ECParameters
{
Curve = curve,
Q = new ECPoint
{
X = buffer[1..33],
Y = buffer[33..]
}
Q = new ECPoint { X = buffer[1..33], Y = buffer[33..] }
});
CacheECDsa.Add(new ECDsaCacheItem(pubkey, ecdsa));
return ecdsa;
Expand All @@ -199,7 +289,8 @@ public static ECDsa CreateECDsa(ECC.ECPoint pubkey)
/// <param name="curve">The curve to be used by the ECDSA algorithm.</param>
/// <param name="hasher">The hash algorithm to be used hash the message, the default is SHA256.</param>
/// <returns><see langword="true"/> if the signature is valid; otherwise, <see langword="false"/>.</returns>
public static bool VerifySignature(ReadOnlySpan<byte> message, ReadOnlySpan<byte> signature, ReadOnlySpan<byte> pubkey, ECC.ECCurve curve, Hasher hasher = Hasher.SHA256)
public static bool VerifySignature(ReadOnlySpan<byte> message, ReadOnlySpan<byte> signature,
ReadOnlySpan<byte> pubkey, ECC.ECCurve curve, Hasher hasher = Hasher.SHA256)
{
return VerifySignature(message, signature, ECC.ECPoint.DecodePoint(pubkey, curve), hasher);
}
Expand Down
16 changes: 13 additions & 3 deletions src/Neo/Cryptography/ECC/ECCurve.cs
Original file line number Diff line number Diff line change
Expand Up @@ -10,6 +10,7 @@
// modifications are permitted.

using Neo.Extensions;
using Org.BouncyCastle.Crypto.Parameters;
using System.Globalization;
using System.Numerics;

Expand All @@ -33,9 +34,14 @@ public class ECCurve
/// </summary>
public readonly ECPoint G;

public readonly Org.BouncyCastle.Asn1.X9.X9ECParameters BouncyCastleCurve;
/// <summary>
/// Holds domain parameters for Secp256r1 elliptic curve.
/// </summary>
public readonly ECDomainParameters BouncyCastleDomainParams;
internal readonly int ExpectedECPointLength;

private ECCurve(BigInteger Q, BigInteger A, BigInteger B, BigInteger N, byte[] G)
private ECCurve(BigInteger Q, BigInteger A, BigInteger B, BigInteger N, byte[] G, string curveName)
{
this.Q = Q;
ExpectedECPointLength = ((int)VM.Utility.GetBitLength(Q) + 7) / 8;
Expand All @@ -44,6 +50,8 @@ private ECCurve(BigInteger Q, BigInteger A, BigInteger B, BigInteger N, byte[] G
this.N = N;
Infinity = new ECPoint(null, null, this);
this.G = ECPoint.DecodePoint(G, this);
BouncyCastleCurve = Org.BouncyCastle.Asn1.Sec.SecNamedCurves.GetByName(curveName);
BouncyCastleDomainParams = new ECDomainParameters(BouncyCastleCurve.Curve, BouncyCastleCurve.G, BouncyCastleCurve.N, BouncyCastleCurve.H);
}

/// <summary>
Expand All @@ -55,7 +63,8 @@ private ECCurve(BigInteger Q, BigInteger A, BigInteger B, BigInteger N, byte[] G
BigInteger.Zero,
7,
BigInteger.Parse("00FFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFEBAAEDCE6AF48A03BBFD25E8CD0364141", NumberStyles.AllowHexSpecifier),
("04" + "79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798" + "483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8").HexToBytes()
("04" + "79BE667EF9DCBBAC55A06295CE870B07029BFCDB2DCE28D959F2815B16F81798" + "483ADA7726A3C4655DA4FBFC0E1108A8FD17B448A68554199C47D08FFB10D4B8").HexToBytes(),
"secp256k1"
);

/// <summary>
Expand All @@ -67,7 +76,8 @@ private ECCurve(BigInteger Q, BigInteger A, BigInteger B, BigInteger N, byte[] G
BigInteger.Parse("00FFFFFFFF00000001000000000000000000000000FFFFFFFFFFFFFFFFFFFFFFFC", NumberStyles.AllowHexSpecifier),
BigInteger.Parse("005AC635D8AA3A93E7B3EBBD55769886BC651D06B0CC53B0F63BCE3C3E27D2604B", NumberStyles.AllowHexSpecifier),
BigInteger.Parse("00FFFFFFFF00000000FFFFFFFFFFFFFFFFBCE6FAADA7179E84F3B9CAC2FC632551", NumberStyles.AllowHexSpecifier),
("04" + "6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296" + "4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5").HexToBytes()
("04" + "6B17D1F2E12C4247F8BCE6E563A440F277037D812DEB33A0F4A13945D898C296" + "4FE342E2FE1A7F9B8EE7EB4A7C0F9E162BCE33576B315ECECBB6406837BF51F5").HexToBytes(),
"secp256r1"
);
}
}
26 changes: 26 additions & 0 deletions src/Neo/Cryptography/SignatureFormat.cs
Original file line number Diff line number Diff line change
@@ -0,0 +1,26 @@
// Copyright (C) 2015-2024 The Neo Project.
//
// SignatureFormat.cs file belongs to the neo project and is free
// software distributed under the MIT software license, see the
// accompanying file LICENSE in the main directory of the
// repository or http://www.opensource.org/licenses/mit-license.php
// for more details.
//
// Redistribution and use in source and binary forms with or without
// modifications are permitted.

namespace Neo.Cryptography
{
public enum SignatureFormat : byte
{
/// <summary>
/// Der
/// </summary>
Der = 0,

/// <summary>
/// Fixed 32 bytes per BigInteger
/// </summary>
Fixed32 = 1
}
}
Loading
Loading