forked from daibiaoxuwu/NeLoRa_Dataset
-
Notifications
You must be signed in to change notification settings - Fork 0
nguyenhuykhang/NeLoRa_Dataset
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
This folder provides the neural-based LoRa demodulation code for our ICLR 2023 workshop paper: NELORA-BENCH: A BENCHMARK FOR NEURAL ENHANCED LORA DEMODULATION usage: 1. unzip dataset.zip into a certain location(e.g. /path/to/dataset/, containing 2 folders, /path/to/dataset/train and /path/to/dataset/test); 2. put the checkpoint files (70000_C_XtoY.pkl, 70000_maskCNN.pkl) at a certain location(e.g. /path/to/checkpoint_SF8/) 3. run: (using snr=-18, sf=8 for example) python3 main.py --train_iters 0 --snr -18 --sf 8 --lr 0.0001 --data_dir /path/to/dataset/test/8 --batch_size 8 --w_image 1024 --checkpoint_dir /path/to/checkpoint_SF8 --test_step 100 typical output would be: ================================================================================ Opts -------------------------------------------------------------------------------- COMMAND: main.py --train_iters 0 --snr -18 --sf 8 --lr 0.0001 --data_dir /path/to/NeLoRa_Dataset/NeLoRa_Dataset/8 --batch_size 8 --w_image 1024 --checkpoint_dir /path/to/checkpoints --max_test_iters 100 opts.conv_dim_lstm 2048 LOAD ITER: 70000 LOAD MODEL: /path/to/checkpoints/fver_0121_M0/70000_maskCNN.pkl Current Time = 2023-02-05 00:36:48 data_dir /path/to/NeLoRa_Dataset/NeLoRa_Dataset/8 sf 8 snr -18.0 batch_size 8 lr 0.0001 w_image 1024.0 checkpoint_dir /path/to/checkpoints/fver_0121_M0 load_checkpoint_dir /path/to/checkpoints/fver_0121_M0 load yes load_iters 70000 dechirp True ================================================================================ read data: max cnt 524 0 min cnt 1 102 CURRENT TIME ITER YLOSS ILOSS CLOSS ACC TIME ----TRAINING 0.0001 ---- SAVED TEST SAMPLE: /path/to/checkpoints/sample-070001-snr-18.0-Yval.png TEST: ACC: 0.9824999570846558 [98.25/100] ILOSS: 0.397 CLOSS: 0.092 REACHED 0.85 ACC, TERMINATINg... 4. run the baseline method (the dechirp method): python3 main_baseline.py --snr -18 --sf 8 --data_dir /path/to/dataset/test/8 --rep 1
About
This folder provides the neural-based LoRa demodulation code for our ICLR 2023 workshop paper: NELORA-BENCH: A BENCHMARK FOR NEURAL ENHANCED LORA DEMODULATION
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published
Languages
- Python 100.0%