Code of Paper:
Ensemble Pruning based on Objection Maximization with a General Distributed Framework
Including:
- Centralized Objection Maximization for Ensemble Pruning (COMEP)
- Distributed Objection Maximization for Ensemble Pruning (DOMEP)
- Ensemble Pruning Framework in a Distributed Setting (EPFD)
-
Create a virtual environment
$ conda create -n EPFD python=3.9 $ source activate EPFD $ # source deactivate
or
$ virtualenv EPFD --python=/usr/bin/python3 $ source EPFD/bin/activate $ # deactivate
-
Install packages
$ pip install -r requirements.txt $ git clone https://github.com/eustomaqua/PyEnsemble.git $ pip install -e ./PyEnsemble
Dataset: iris
Optional Choices of Ensemble Pruning Methods:
name-pru ['ES', 'KP', 'KL', 'RE', 'OO', 'DREP', 'SEP', 'OEP', 'PEP', 'COMEP', 'DOMEP']
e.g.,
$ python main.py --nb-cls 31 --nb-pru 7 --name-pru COMEP --lam 0.5 --m 2
$ python main.py --nb-cls 31 --nb-pru 7 --name-pru DOMEP --lam 0.5 --m 2
$ python main.py --nb-cls 31 --nb-pru 7 --name-pru PEP --distributed --m 2
Please cite our paper if you use this repository
@article{8891828,
title = {Ensemble Pruning Based on Objection Maximization With a General Distributed Framework},
author = {Bian, Yijun and Wang, Yijun and Yao, Yaqiang and Chen, Huanhuan},
journal = {IEEE Transactions on Neural Networks and Learning Systems},
year = {2020},
volume = {31},
number = {9},
pages = {3766--3774},
doi = {10.1109/TNNLS.2019.2945116},
publisher = {IEEE},
url = {https://ieeexplore.ieee.org/document/8891828},
}