Implementation of Black-body radiation shift to atomic state #172
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
Description
This adds two new methods to the arc package,
getBBRshift
andgetFarleyWing
. The former calculates the BBR shift (Dynamic AC Stark shift) in hertz for an atomic state that is bathed in black-body radiation from a source at temperature, T. The latter is a function used in calculating the shift.Method
The code sums over all possible dipole transitions to calculate the total contribution to the BBR shift [1][2]
(Equation (17) from [1]) where$\mu_{ij}$ is the radial matrix element between state i and j. $\mathcal{F}$ is the Farley-Wing Function which is defined as
where$P$ is the Cuachy principal value. This integral is evaluated using an expression from [3].
where
mpmath
.Parameters for
getBBRshift
n, l, j
quantum numbers of the state of interesttemperature
temperature of thermal bathincludeLevelsUpTo
is the number of dipole transitions with someParameters for
getFarleyWing
n1, l1, j1
quantum number for the state for which we are calculating the BBR shiftn2, l2, j2
quantum number for the state that contributes to the total shifttemperature
temperature of thermal bathExample
Cs Shift of 20D5/2 State at 300 K: 2591.662237815993
Rb Shift of 30P1/2 State at 77 K: 201.91889209461314
Rb Shift of 30P3/2 State at 77 K: 204.5175630891436
Cs BBR Shifts at 300 K for nS States
n, n*, freq shift (Hz)
6 1.8692 -3.332
7 2.9199 -58.81
8 3.9344 -476.7
9 4.9405 -291.0
10 5.9437 1210.0
11 6.9456 2178.0
12 7.9468 2601.0
13 8.9476 2767.0
14 9.9482 2814.0
15 10.949 2807.0
16 11.949 2778.0
17 12.949 2742.0
18 13.949 2704.0
19 14.95 2669.0
20 15.95 2636.0
25 20.95 2521.0
30 25.95 2459.0
References:
[1] - Farley, John W., and William H. Wing. Physical Review A 23.5 (1981): 2397 doi = {10.1103/PhysRevA.23.2397}
[2] - Norrgard, Eric B., et al. "Quantum blackbody thermometry." New Journal of Physics 23.3 (2021): 033037.
[3] - A.A. Kamenski et al 2019 Quantum Electron. 49 464, DOI:10.1070/QEL17000