AntiDriftDeepMalware_MSc_project.pdf
https://github.com/nirosen/Malware-classification-of-the-Berkeley-detection-dataset
- install prequisiotions:
conda env create -f environment.yml && conda activate pytorch17
-
extract the compressed data folder miller60K_80dev_20future.
-
train the model with provided dataset_path (require specification of time_split / rand_split folder)
unzip data.zip
python train.py --dataset_path=data/miller60K_80dev_20future/time_split --train_procedure=all
python train.py --dataset_path=data/miller60K_80dev_20future/rand_split --train_procedure=all
- anlyze results with jupyter notebooks in analyze_reulsts folder - hypothesis_and_plot and statistic_test.