Skip to content

nitthilan/kilonerf_modified

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

KiloNeRF: Speeding up Neural Radiance Fields with Thousands of Tiny MLPs

Check out the paper on arXiv: https://arxiv.org/abs/2103.13744

KiloNeRF interactive demo

This repo contains the code for KiloNeRF, together with instructions on how to download pretrained models and datasets. Additionally, we provide a viewer for interactive visualization of KiloNeRF scenes. We further improved the implementation and KiloNeRF now runs ~5 times faster than the numbers we report in the first arXiv version of the paper. As a consequence the Lego scene can now be rendered at around 50 FPS.

Prerequisites

  • OS: Ubuntu 20.04.2 LTS
  • GPU: >= NVIDIA GTX 1080 Ti with >= 460.73.01 driver
  • Python package manager conda

Setup

Open a terminal in the root directory of this repo and execute export KILONERF_HOME=$PWD

Install OpenGL and GLUT development files
sudo apt install libgl-dev freeglut3-dev

Install Python packages
conda env create -f $KILONERF_HOME/environment.yml

Activate kilonerf environment
source activate kilonerf

CUDA extension installation

You can either install our pre-compiled CUDA extension or compile the extension yourself. Only compiling it yourself will allow you to make changes to the CUDA code but is more tedious.

Option A: Install pre-compiled CUDA extension

Install pre-compiled CUDA extension
pip install $KILONERF_HOME/cuda/dist/kilonerf_cuda-0.0.0-cp38-cp38-linux_x86_64.whl

Option B: Build CUDA extension yourself

Install CUDA development kit and restart your bash:

wget https://developer.download.nvidia.com/compute/cuda/11.1.1/local_installers/cuda_11.1.1_455.32.00_linux.run
sudo sh cuda_11.1.1_455.32.00_linux.run
echo -e "\nexport PATH=\"/usr/local/cuda/bin:\$PATH\"" >> ~/.bashrc
echo "export LD_LIBRARY_PATH=\"/usr/local/cuda/lib64:\$LD_LIBRARY_PATH\"" >> ~/.bashrc

Download magma from http://icl.utk.edu/projectsfiles/magma/downloads/magma-2.5.4.tar.gz then build and install to /usr/local/magma

sudo apt install gfortran libopenblas-dev
wget http://icl.utk.edu/projectsfiles/magma/downloads/magma-2.5.4.tar.gz
tar -zxvf magma-2.5.4.tar.gz
cd magma-2.5.4
cp make.inc-examples/make.inc.openblas make.inc
export GPU_TARGET="Maxwell Pascal Volta Turing"
export CUDADIR=/usr/local/cuda
export OPENBLASDIR="/usr"
make
sudo -E make install prefix=/usr/local/magma

For further information on installing magma see: http://icl.cs.utk.edu/projectsfiles/magma/doxygen/installing.html

Finally compile KiloNeRF's C++/CUDA code

cd $KILONERF_HOME/cuda
python setup.py develop

Download pretrained models

We provide pretrained KiloNeRF models for the following scenes: Synthetic_NeRF_Chair, Synthetic_NeRF_Lego, Synthetic_NeRF_Ship, Synthetic_NSVF_Palace, Synthetic_NSVF_Robot

cd $KILONERF_HOME
mkdir logs
cd logs
wget https://www.dropbox.com/s/eqvf3x23qbubr9p/kilonerf-pretrained.tar.gz?dl=1 --output-document=paper.tar.gz
tar -xf paper.tar.gz

Download NSVF datasets

Credit to NSVF authors for providing their datasets: https://github.com/facebookresearch/NSVF

cd $KILONERF_HOME/data/nsvf
wget https://dl.fbaipublicfiles.com/nsvf/dataset/Synthetic_NSVF.zip && unzip -n Synthetic_NSVF.zip
wget https://dl.fbaipublicfiles.com/nsvf/dataset/Synthetic_NeRF.zip && unzip -n Synthetic_NeRF.zip
wget https://dl.fbaipublicfiles.com/nsvf/dataset/BlendedMVS.zip && unzip -n BlendedMVS.zip
wget https://dl.fbaipublicfiles.com/nsvf/dataset/TanksAndTemple.zip && unzip -n TanksAndTemple.zip

Since we slightly adjusted the bounding boxes for some scenes, it is important that you use the provided unzip argument to avoid overwriting our bounding boxes.

Usage

To benchmark a trained model run:
bash benchmark.sh

You can launch the interactive viewer by running:
bash render_to_screen.sh

To train a model yourself run
bash train.sh

The default dataset is Synthetic_NeRF_Lego, you can adjust the dataset by setting the dataset variable in the respective script.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published