Skip to content

Commit

Permalink
[GPU/OpenCL/Update] Initial version of LM Head layer with OpencCl ops…
Browse files Browse the repository at this point in the history
… and Update Addition Layer on GPU with latest Pipeline changes

Added initial version of LM head layer fpr GPU and removed dependencies of cl_context for addition_layer.

Signed-off-by: Yash Singh <[email protected]>
  • Loading branch information
yashSingh0723 committed Oct 9, 2024
1 parent f222ecf commit 210d217
Show file tree
Hide file tree
Showing 14 changed files with 775 additions and 8 deletions.
12 changes: 11 additions & 1 deletion api/ccapi/include/layer.h
Original file line number Diff line number Diff line change
Expand Up @@ -103,7 +103,8 @@ enum LayerType {
derivative */
LAYER_UPSAMPLE2D, /**< Upsample 2D Layer type */
LAYER_RMSNORM = ML_TRAIN_LAYER_TYPE_RMSNORM, /**<RMS NORM Layer */
LAYER_UNKNOWN = ML_TRAIN_LAYER_TYPE_UNKNOWN /**< Unknown */
LAYER_UNKNOWN = ML_TRAIN_LAYER_TYPE_UNKNOWN, /**< Unknown */
LAYER_LM_HEAD = ML_TRAIN_LAYER_TYPE_LM_HEAD, /**< LM Head Layer */
};

/**
Expand Down Expand Up @@ -398,6 +399,15 @@ Addition(const std::vector<std::string> &properties = {},
return createLayer(LayerType::LAYER_ADDITION, properties, compute_engine);
}

/**
* @brief Helper function to create lm_head layer
*/
inline std::unique_ptr<Layer>
LmHead(const std::vector<std::string> &properties = {},
const LayerComputeEngine &compute_engine = LayerComputeEngine::CPU) {
return createLayer(LayerType::LAYER_LM_HEAD, properties, compute_engine);
}

/**
* @brief Helper function to create concat layer
*/
Expand Down
1 change: 1 addition & 0 deletions api/nntrainer-api-common.h
Original file line number Diff line number Diff line change
Expand Up @@ -65,6 +65,7 @@ typedef enum {
ML_TRAIN_LAYER_TYPE_IDENTITY = 29, /**< Identity Layer type (Since 8.0) */
ML_TRAIN_LAYER_TYPE_SWIGLU = 30, /**< Swiglu Layer type */
ML_TRAIN_LAYER_TYPE_WEIGHT = 31, /**< Weight Layer type (Since 9.0)*/
ML_TRAIN_LAYER_TYPE_LM_HEAD = 32, /**< LM Head Layer type */
ML_TRAIN_LAYER_TYPE_PREPROCESS_FLIP =
300, /**< Preprocess flip Layer (Since 6.5) */
ML_TRAIN_LAYER_TYPE_PREPROCESS_TRANSLATE =
Expand Down
12 changes: 9 additions & 3 deletions nntrainer/cl_context.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,7 @@
* @see https://github.com/nnstreamer/nntrainer
* @author Debadri Samaddar <[email protected]>
* @author Niket Agarwal <[email protected]>
* @author Yash Singh <[email protected]>
* @author Thummala Pallavi <[email protected]>
* @bug No known bugs except for NYI items
* @brief This file contains app context related functions and classes that
Expand All @@ -19,6 +20,7 @@
#include <cl_context.h>
#include <concat_cl.h>
#include <fc_layer_cl.h>
#include <lm_head_layer_cl.h>
#include <reshape_cl.h>
#include <rmsnorm_layer_cl.h>
#include <swiglu_cl.h>
Expand All @@ -35,9 +37,9 @@ static void add_default_object(ClContext &cc) {
// FullyConnectedLayerCl::type,
// ml::train::LayerType::LAYER_FC);

// cc.registerFactory(nntrainer::createLayer<AdditionLayerCL>,
// AdditionLayerCL::type,
// ml::train::LayerType::LAYER_ADDITION);
cc.registerFactory(nntrainer::createLayer<AdditionLayerCL>,
AdditionLayerCL::type,
ml::train::LayerType::LAYER_ADDITION);

// cc.registerFactory(nntrainer::createLayer<SwiGLULayerCl>,
// SwiGLULayerCl::type,
Expand All @@ -54,6 +56,10 @@ static void add_default_object(ClContext &cc) {
// cc.registerFactory(nntrainer::createLayer<ConcatLayerCl>,
// ConcatLayerCl::type,
// ml::train::LayerType::LAYER_CONCAT);

cc.registerFactory(nntrainer::createLayer<CustomLMHeadLayerCl>,
CustomLMHeadLayerCl::type,
ml::train::LayerType::LAYER_LM_HEAD);
}

static void registerer(ClContext &cc) noexcept {
Expand Down
4 changes: 2 additions & 2 deletions nntrainer/layers/cl_layers/addition_layer_cl.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -37,7 +37,7 @@ void AdditionLayerCL::forwarding(RunLayerContext &context, bool training) {
if (!idx) {
hidden_.copy(input_);
} else {
add_i_cl(input_, hidden_, context);
add_i_cl(input_, hidden_);
}
}
}
Expand Down Expand Up @@ -77,7 +77,7 @@ void AdditionLayerCL::incremental_forwarding(RunLayerContext &context,
if (!idx) {
hidden_step.copy(input_step);
} else {
add_i_cl(input_step, hidden_step, context);
add_i_cl(input_step, hidden_step);
}
}
}
Expand Down
3 changes: 2 additions & 1 deletion nntrainer/layers/cl_layers/addition_layer_cl.h
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@
#define __ADDITION_LAYER_CL_H__
#ifdef __cplusplus

#include <cl_context.h>
#include <common_properties.h>
#include <layer_devel.h>

Expand All @@ -40,7 +41,7 @@ class AdditionLayerCL : public Layer {
/**
* @brief Destructor of Addition Layer
*/
~AdditionLayerCL(){};
~AdditionLayerCL() {};

/**
* @brief Move constructor of AdditionLayer.
Expand Down
130 changes: 130 additions & 0 deletions nntrainer/layers/cl_layers/custom_vocab_selection.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,130 @@
// SPDX-License-Identifier: Apache-2.0
/**
* Copyright (C) 2024 Yash Singh <[email protected]>>
*
* @file custom_vocab_selection.cpp
* @date 1 Oct 2024
* @see https://github.com/nnstreamer/nntrainer
* @author Yash Singh <[email protected]>
* @bug No known bugs except for NYI items
* @brief Implementation of custom vocab selection
*/

#include <algorithm>
#include <custom_vocab_selection.h>

nntrainer::VocabSelection::VocabSelection(LshType lshType, int lshChoices,
int hiddenSize, int vocabCnt) :
lshType(lshType),
lshChoices(lshChoices),
vocabCnt(vocabCnt),
hiddenSize(hiddenSize),
lshBlockNum(0),
lshBits(0) {}

nntrainer::VocabSelection::~VocabSelection() {}

nntrainer::VocabSelectionNNTrainer::VocabSelectionNNTrainer(
LshType lshType, int lshChoices, int hiddenSize, int vocabCnt,
nntrainer::Tensor &weights) :
VocabSelection(lshType, lshChoices, hiddenSize, vocabCnt) {
this->lshBlockNum = (hiddenSize + lshBlockSize - 1) / lshBlockSize;
this->lshBits = lshBlockNum * lshBlockSize;
this->lshData = std::vector<lshDataBlock>(this->vocabCnt * lshBlockNum);

// for (unsigned int i = 0; i < vocabCnt; ++i) {
// for (unsigned int j = 0; j < lshBlockNum; ++j) {
// unsigned int actualSize = std::min(lshBlockSize, hiddenSize -
// (int)j * lshBlockSize); lshDataBlock d; for (unsigned int k = 0; k
// < actualSize; ++k) {
// d[k] = weights.getValue<_FP16>(0, 0, i, j * lshBlockSize + k) >
// 0 ? 1 : 0;
// }
// for (unsigned int k = actualSize; k < lshBlockSize; ++k) {
// d[k] = 0;
// }
// this->lshData[i * lshBlockNum + j] = d;
// }
// }

for (unsigned int i = 0; i < lshBlockNum; ++i) {
unsigned int actualSize =
std::min(lshBlockSize, hiddenSize - (int)i * lshBlockSize);
for (unsigned int j = 0; j < vocabCnt; ++j) {
lshDataBlock d;
for (unsigned int k = 0; k < actualSize; ++k) {
if (weights.getDataType() == nntrainer::TensorDim::DataType::FP32) {
d[k] = weights.getValue(0, 0, i * lshBlockSize + k, j) > 0 ? 1 : 0;
} else if (weights.getDataType() ==
nntrainer::TensorDim::DataType::FP16) {
d[k] =
weights.getValue<_FP16>(0, 0, i * lshBlockSize + k, j) > 0 ? 1 : 0;
}
}
for (unsigned int k = actualSize; k < lshBlockSize; ++k) {
d[k] = 0;
}
this->lshData[j * lshBlockNum + i] = d;
}
}
}

std::vector<std::vector<int>>
nntrainer::VocabSelectionNNTrainer::getVocabs(const nntrainer::Tensor &input) {
unsigned int batchSize = input.height();

std::vector<std::vector<int>> res = std::vector<std::vector<int>>(batchSize);
for (int i = 0; i < batchSize; i++) {
std::vector<lshDataBlock> d(lshBlockNum);
for (int k = 0; k < lshBlockNum; k++) {
int actualSize = std::min(lshBlockSize, hiddenSize - k * lshBlockSize);
for (int j = 0; j < actualSize; j++) {
if (input.getDataType() == nntrainer::TensorDim::DataType::FP32) {
d[k][j] = input.getValue(0, 0, i, j + k * lshBlockSize) >= 0 ? 1 : 0;
} else if (input.getDataType() ==
nntrainer::TensorDim::DataType::FP16) {
d[k][j] =
input.getValue<_FP16>(0, 0, i, j + k * lshBlockSize) >= 0 ? 1 : 0;
}
}
for (int j = actualSize; j < lshBlockSize; j++) {
d[k][j] = 0;
}
}
std::vector<int> simResult(vocabCnt, 0);
std::vector<int> simCount(lshBits + 1, 0);
for (int j = 0; j < vocabCnt; j++) {
for (int k = 0; k < lshBlockNum; k++) {
simResult[j] += (d[k] ^ lshData[j * lshBlockNum + k]).count();
}
simCount[simResult[j]]++;
}
int cut = lshBits + 1;
int leftover = 0;
int countSum = 0;
for (int j = 0; j <= lshBits; j++) {
countSum += simCount[j];
if (countSum > lshChoices) {
cut = j;
leftover = simCount[j] - (countSum - lshChoices);
break;
}
}
std::vector<int> selectedVocabs(lshChoices);
int pos = 0;
for (int j = 0; j < vocabCnt; j++) {
if (simResult[j] <= cut) {
if (simResult[j] < cut) {
selectedVocabs[pos] = j;
pos++;
} else if (leftover > 0) {
selectedVocabs[pos] = j;
pos++;
leftover--;
}
}
}
res[i] = selectedVocabs;
}
return res;
}
101 changes: 101 additions & 0 deletions nntrainer/layers/cl_layers/custom_vocab_selection.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,101 @@
// SPDX-License-Identifier: Apache-2.0
/**
* Copyright (C) 2024 Yash Singh <[email protected]>>
*
* @file custom_vocab_selection.h
* @date 1 Oct 2024
* @see https://github.com/nnstreamer/nntrainer
* @author Yash Singh <[email protected]>
* @bug No known bugs except for NYI items
* @brief Implementation of custom vocab selection
*/

#ifndef VOCAB_SELECTION_H
#define VOCAB_SELECTION_H

#include <tensor.h>

#ifndef LSH_BLOCK_SIZE
#define LSH_BLOCK_SIZE 256
#endif

using namespace std;

namespace nntrainer {

/**
* @brief Enumeration for different types of LSH algorithms used in vocab
* selection
*
*/
enum LshType { NONE = 0, SIMHASH = 1, ORTHOSIMHASH = 2 };
typedef std::bitset<LSH_BLOCK_SIZE> lshDataBlock;

/**
* @brief Vocab Selection class to select the vocabs from model output using LSH
*
*/
class VocabSelection {
protected:
int hiddenSize;
int vocabCnt;
const int lshBlockSize = LSH_BLOCK_SIZE;
int lshBlockNum;
int lshBits; // lshBlockSize * lshBlockNum
int lshChoices;
LshType lshType;
std::vector<lshDataBlock> lshData;

public:
/**
* @brief Constructor of VocabSelection class
*
*/
VocabSelection(LshType lshType, int lshChoices, int hiddenSize, int vocabCnt);
virtual std::
vector<std::vector<int>>

/**
* @brief Get the Vocabs object
*/
getVocabs(const nntrainer::Tensor &modelOutput) = 0;

/**
* @brief Destructor of VocabSelection class
*/
~VocabSelection();
};

/**
* @brief Vocab Selection NNTrainer class to select the vocabs from model output
* using LSH
*
*/
class VocabSelectionNNTrainer : public VocabSelection {
protected:
nntrainer::Tensor lshWeight;

public:
/**
* @brief Constructor of VocabSelectionNNTrainer class
*/
VocabSelectionNNTrainer(LshType lshType, int lshChoices, int hiddenSize,
int vocabCnt, nntrainer::Tensor &weights);
virtual std::
vector<std::vector<int>>

/**
* @brief Get the Vocabs object
*
*/
getVocabs(const nntrainer::Tensor &modelOutput);

/**
* @brief Destructor of VocabSelectionNNTrainer class
*/
~VocabSelectionNNTrainer() {};
};

} // namespace nntrainer

#endif
Loading

0 comments on commit 210d217

Please sign in to comment.