Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Auto e2e benchmarker. #372

Open
wants to merge 6 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
3 changes: 3 additions & 0 deletions .gitignore
Original file line number Diff line number Diff line change
Expand Up @@ -28,3 +28,6 @@ wheelhouse
*.safetensors
*.gguf
*.vmfb

#Benchmark artifacts
benchmark_e2e_results.json
Empty file.
65 changes: 65 additions & 0 deletions python/turbine_models/custom_models/llama_benchmark/e2e/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,65 @@
# Instructions

Clone and install SHARK-Turbine
```
git clone https://github.com/nod-ai/SHARK-Turbine.git
cd SHARK-Turbine
python -m venv turbine_venv && source turbine_venv/bin/activate

pip install --upgrade -r requirements.txt
pip install --upgrade -e .[torch-cpu-nightly,testing]
pip install --upgrade -r turbine-models-requirements.txt
```

## Compiling LLMs
Note: Make sure to replace "your_token" with your actual hf_auth_token for all the commands.

Now, you can generate the quantized weight file with
```
python python/turbine_models/gen_external_params/gen_external_params.py --hf_auth_token=your_token
```
The model weights will then be saved in the current directory as `Llama_2_7b_chat_hf_f16_int4.safetensors`.

To compile to vmfb for llama
```
python python/turbine_models/custom_models/stateless_llama.py --compile_to=vmfb --hf_auth_token=your_token --external_weights="safetensors" --quantization="int4" --precision="f16"
```
By default the vmfb will be saved as `Llama_2_7b_chat_hf.vmfb`.

## Benchmarking LLMs e2e
To run benchmark with the default benchmark dataset just run:
```
python python/turbine_models/custom_models/llama-benchmark/e2e/llm_e2e_benchmark.py --vmfb_path=/path/to/Llama_2_7b_chat_hf.vmfb --external_weight_path=Llama_2_7b_chat_hf_f16_int4.safetensors --device=vulkan hf_auth_token=your_hf_token
```
You can specify a path to dataset using: `--benchmark_dataset_path=/path/to/dataset.json`
You can specify where to store the result path using: `--benchmark_output_path=/path/to/output.json`

## Benchmarking Dataset

To setup a dataset json you'd need a json file with a list of entry(s) containing these attributes:
1. id : number identifying example (int)
2. system_prompt : System prompt to align LLM (str)
3. user_prompt : Query example from user (str)
4. num_iterations : number of times to run/benchmark the particular example (int)
5. num_tokens_to_generate : how many tokens do we want to generate for the example (int)

Here is a sample:
```json
[
{"id" : 0,
"system_prompt": "<s>[INST] <<SYS>>\nBe concise. You are a helpful, respectful and honest assistant. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\n <</SYS>>\n\n",
"user_prompt" : "what is the capital of canada?",
"num_iterations": 8,
"num_tokens_to_generate": 20}
]
```

The default dataset in `benchmark_prompts.json` contains example that SHARK-1.0 traditionally measures. Additionally, we also added some data common in MLPerf which uses some data from open-orca. In the future, we should add more of the data from open-orca to run benchmarks with.

## Benchmarking Output

The output json will have similar attributes with an addition of the results/measured benchmarks. Hence it will have these additional attributes:
1. prefill_tokens : number of tokens ran during the prefill stage (int)
2. prefill_speed(tok/s) : Number of tokens for initial input / time to complete prefill (float)
3. decoded_tokens : number of tokens decoded during decode stage. (int)
4. decode_speed(tok/s) : Average speed of decoding per token for this example, averaged over the number of iterations. (float)
Empty file.
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
[
{"id" : 0, "system_prompt": "hi", "user_prompt" : "", "num_iterations": 5, "num_tokens_to_generate": 512},
{"id" : 1, "system_prompt": "<s>[INST] <<SYS>>\nBe concise. You are a helpful, respectful and honest assistant. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\n <</SYS>>\n\n", "user_prompt" : "what is the capital of canada?", "num_iterations": 8, "num_tokens_to_generate": 20},
{"id" : 2, "system_prompt": "<s>[INST] <<SYS>>\nBe concise. You are a helpful, respectful and honest assistant. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\n <</SYS>>\n\n", "user_prompt" : "what is the capital of canada and what is famouse for", "num_iterations": 5, "num_tokens_to_generate": 255},
{"id" : 3, "system_prompt": "<s>[INST] <<SYS>>\nYou are an AI assistant. You will be given a task. You must generate a detailed and long answer.\n <</SYS>>\n\n", "user_prompt" : "Generate an approximately fifteen-word sentence that describes all this data: Midsummer House eatType restaurant; Midsummer House food Chinese; Midsummer House priceRange moderate; Midsummer House customer rating 3 out of 5; Midsummer House near All Bar One", "num_iterations": 5, "num_tokens_to_generate": 50},
{"id" : 4, "system_prompt": "<s>[INST] <<SYS>>\nYou are an AI assistant that helps people find information. \n <</SYS>>\n\n", "user_prompt" : "James runs a TV show and there are 5 main characters and 4 minor characters. He pays the minor characters $15,000 each episode. He paid the major characters three times as much. How much does he pay per episode? Let's be accurate as possible.", "num_iterations": 5, "num_tokens_to_generate": 255}
]
Original file line number Diff line number Diff line change
@@ -0,0 +1,127 @@
import argparse
from turbine_models.model_runner import vmfbRunner
from transformers import AutoTokenizer
from iree import runtime as ireert
import torch
import time
from turbine_models.custom_models.llm_optimizations.streaming_llm.modify_llama import (
enable_llama_pos_shift_attention,
)
from turbine_models.custom_models.llm_runner import parser, SharkLLM
import os
import json

parser.add_argument(
"--benchmark_dataset_path",
type=str,
default=f"{os.path.dirname(os.path.realpath(__file__))}/benchmark_prompts.json",
help="path to benchmarking dataset",
)
parser.add_argument(
"--benchmark_output_path",
type=str,
default=f"{os.getcwd()}/benchmark_e2e_results.json",
help="path to benchmarking dataset",
)


B_INST, E_INST = "[INST]", "[/INST]"


def append_user_prompt(history, input_prompt):
if len(input_prompt) == 0:
return history
user_prompt = f"{B_INST} {input_prompt} {E_INST}"
history += user_prompt
return history


def load_dataset(dataset_path):
dataset = []
with open(dataset_path) as f:
dataset = json.load(f)
if len(dataset) <= 0:
raise ValueError("Dataset is empty, or did not read dataset correctly.")
return dataset


def run_llm_benchmark(
device,
vmfb_path,
hf_model_name,
hf_auth_token,
external_weight_path,
dataset_path,
output_path,
streaming_llm=False,
):
# TODO: Support streamingLLM benchmarking, need streamingLLM to be able to reset history/seq_len to 0.
if streaming_llm:
raise ValueError("Streaming LLM currently not supported for benchmarking.")
tokenizer = AutoTokenizer.from_pretrained(
hf_model_name,
use_fast=False,
token=hf_auth_token,
)
dataset = load_dataset(dataset_path)
result_dicts = []
llm = SharkLLM(
device=device,
vmfb_path=vmfb_path,
external_weight_path=external_weight_path,
streaming_llm=streaming_llm,
)
for data in dataset:
llm.set_min_token(data["num_tokens_to_generate"])
llm.set_max_token(data["num_tokens_to_generate"])
running_token_decode_count = 0
running_token_decode_time = 0.0
running_token_prefill_count = 0
running_token_prefill_time = 0.0
for _ in range(data["num_iterations"]):
prompt = data["system_prompt"]
prompt = append_user_prompt(prompt, data["user_prompt"])
initial_input = tokenizer(prompt, return_tensors="pt")
example_input_id = initial_input.input_ids
result = llm.generate(example_input_id)
bot_response = tokenizer.decode(result, skip_special_tokens=True)
running_token_decode_count += llm.last_num_tokens_decoded
running_token_decode_time += llm.last_prompt_decode_time
running_token_prefill_count += llm.last_num_tokens_prefill
running_token_prefill_time += llm.last_prefill_time
prefill_tokens = running_token_prefill_count / data["num_iterations"]
prefill_speed = running_token_prefill_count / running_token_prefill_time
decoded_tokens = running_token_decode_count / data["num_iterations"] - 1
decode_speed = running_token_decode_count / running_token_decode_time
result_dicts.append(
{
"prompt_id": data["id"],
"system_prompt": data["system_prompt"],
"user_prompt": data["user_prompt"],
"prefill_tokens": prefill_tokens,
"prefill_speed(tok/s)": prefill_speed,
"decoded_tokens": decoded_tokens,
"decode_speed(tok/s)": decode_speed,
"num_iterations": data["num_iterations"],
"response": bot_response,
}
)
with open(output_path, "w") as f:
json_results = json.dumps(result_dicts, indent=2)
f.write(json_results)
return output_path


if __name__ == "__main__":
args = parser.parse_args()
print("generating turbine output: ")
turbine_output_file = run_llm_benchmark(
args.device,
args.vmfb_path,
args.hf_model_name,
args.hf_auth_token,
args.external_weight_path,
args.benchmark_dataset_path,
args.benchmark_output_path,
args.streaming_llm,
)
49 changes: 33 additions & 16 deletions python/turbine_models/custom_models/llm_runner.py
Original file line number Diff line number Diff line change
Expand Up @@ -104,6 +104,18 @@ def __init__(self, device, vmfb_path, external_weight_path, streaming_llm=False)
self.last_prompt = None
self.streaming_llm = streaming_llm
self.prev_token_len = 0
self.min_token = 0
self.max_token = 1024
self.last_prefill_time = -1.0
self.last_prompt_decode_time = -1.0
self.last_num_tokens_decoded = -1
self.last_num_tokens_prefill = -1

def set_min_token(self, min_token):
self.min_token = min_token

def set_max_token(self, max_token):
self.max_token = max_token

def format_out(self, results):
return torch.tensor(results.to_host()[0][0])
Expand All @@ -125,37 +137,36 @@ def generate(self, input_ids):
input_ids = input_ids[:, token_slice:]
inputs = [ireert.asdevicearray(self.runner.config.device, input_ids)]
if self.first_input or not self.streaming_llm:
s = time.time()
prefill_start_time = time.time()
results = self.model["run_initialize"](*inputs) # example_input_id
e = time.time()
print(
f"num_tokens: {token_len}, time_taken={e-s}, tok/second:{token_len/(e-s)}"
)
prefill_end_time = time.time()
self.last_num_tokens_prefill = token_len
self.last_prefill_time = prefill_end_time - prefill_start_time
token_len += 1
self.first_input = False
else:
s = time.time()
prefill_start_time = time.time()
results = self.model["run_cached_initialize"](*inputs) # example_input_id
e = time.time()
print(
f"Cached num_tokens: {token_len}, time_taken={e-s}, tok/second:{token_len/(e-s)}"
)
prefill_end_time = time.time()
self.last_num_tokens_prefill = token_len
self.last_prefill_time = prefill_end_time - prefill_start_time
token_len += 1
s = time.time()
decode_start_time = time.time()
turbine_results.append(self.format_out(results))
while self.format_out(results) != 2:
for _ in range(self.max_token):
if self.streaming_llm and self.model["get_seq_step"]() > 600:
print("Evicting cache space!")
self.model["evict_kvcache_space"]()
results = self.model["run_forward"](results)
# uncomment to see tokens as they are emitted
# print(f"turbine: {tokenizer.decode(self.format_out(results))}")
turbine_results.append(self.format_out(results))
e = time.time()
if self.format_out(results) == 2 and len(turbine_results) >= self.min_token:
break
decode_end_time = time.time()
decoded_tokens = len(turbine_results)
print(
f"Decode num_tokens: {decoded_tokens}, time_taken={e-s}, tok/second:{decoded_tokens/(e-s)}"
)
self.last_prompt_decode_time = decode_end_time - decode_start_time
self.last_num_tokens_decoded = decoded_tokens
self.prev_token_len = token_len + decoded_tokens
return turbine_results

Expand Down Expand Up @@ -196,6 +207,12 @@ def run_llm(
result = llm.generate(example_input_id)
bot_response = tokenizer.decode(result, skip_special_tokens=True)
print(f"\nBOT: {bot_response}\n")
print(
f"Prefill num_tokens : {llm.last_num_tokens_prefill}, time_taken: {llm.last_prefill_time}, tok/second: {llm.last_num_tokens_prefill/llm.last_prefill_time}"
)
print(
f"Decode num_tokens : {llm.last_num_tokens_decoded}, time_taken: {llm.last_prompt_decode_time}, tok/second: {llm.last_num_tokens_decoded/llm.last_prompt_decode_time}"
)
prompt = append_bot_prompt(prompt, bot_response)


Expand Down
4 changes: 4 additions & 0 deletions python/turbine_models/tests/benchmark_prompt_test.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
[
{"id" : 0, "system_prompt": "<s>[INST] <<SYS>>\nBe concise. You are a helpful, respectful and honest assistant. If a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information.\n <</SYS>>\n\n", "user_prompt" : "what is the capital of canada?", "num_iterations": 2, "num_tokens_to_generate": 10},
{"id" : 1, "system_prompt": "<s>[INST] <<SYS>>\nYou are an AI assistant. You will be given a task. You must generate a detailed and long answer.\n <</SYS>>\n\n", "user_prompt" : "Generate an approximately fifteen-word sentence that describes all this data: Midsummer House eatType restaurant; Midsummer House food Chinese; Midsummer House priceRange moderate; Midsummer House customer rating 3 out of 5; Midsummer House near All Bar One", "num_iterations": 1, "num_tokens_to_generate": 25}
]
44 changes: 43 additions & 1 deletion python/turbine_models/tests/stateless_llama_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -9,11 +9,12 @@
import os
import unittest
import difflib
import json

os.environ["TORCH_LOGS"] = "dynamic"
from shark_turbine.aot import *
from turbine_models.custom_models import llm_runner

from turbine_models.custom_models.llama_benchmark.e2e import llm_e2e_benchmark
from turbine_models.gen_external_params.gen_external_params import (
gen_external_params,
)
Expand Down Expand Up @@ -88,6 +89,47 @@ def test_vmfb_comparison(self):
)
check_output_string(torch_str, turbine_str)

def test_benchmark_vmfb(self):
vmfb_name = "Llama_2_7b_chat_hf_function_calling_v2.vmfb"
if not os.path.isfile(vmfb_name):
llama.export_transformer_model(
hf_model_name="Trelis/Llama-2-7b-chat-hf-function-calling-v2",
hf_auth_token=None,
compile_to="vmfb",
external_weights="safetensors",
# external_weight_file="Llama-2-7b-chat-hf-function-calling-v2_f16_int4.safetensors", Do not export weights because this doesn't get quantized
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Nit: remove commented code

quantization=quantization,
precision=precision,
device="llvm-cpu",
target_triple="host",
)
test_dataset_path = "python/turbine_models/tests/benchmark_prompt_test.json"
test_output_path = "benchmark_e2e_results.json"
benchmark_result_path = llm_e2e_benchmark.run_llm_benchmark(
"local-task",
"Llama_2_7b_chat_hf_function_calling_v2.vmfb",
"Trelis/Llama-2-7b-chat-hf-function-calling-v2",
None,
f"Llama_2_7b_chat_hf_function_calling_v2_{precision}_{quantization}.safetensors",
test_dataset_path,
test_output_path,
)
benchmark_result = []
with open(benchmark_result_path) as f:
benchmark_result = json.load(f)
if len(benchmark_result) <= 0:
raise ValueError("Dataset is empty, or did not read dataset correctly.")
# Test result for prompt #1
assert benchmark_result[0]["decoded_tokens"] == 10
assert benchmark_result[0]["num_iterations"] == 2
assert benchmark_result[0]["decode_speed(tok/s)"] > 0
assert benchmark_result[0]["prefill_speed(tok/s)"] > 0
# Test result for prompt #2
assert benchmark_result[1]["decoded_tokens"] == 25
assert benchmark_result[1]["num_iterations"] == 1
assert benchmark_result[1]["decode_speed(tok/s)"] > 0
assert benchmark_result[1]["prefill_speed(tok/s)"] > 0
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Doesn't really test for regressions, just that it ran, right?


def test_streaming_vmfb_comparison(self):
"""
Similar test to above but for streaming-LLM.
Expand Down
Loading