-
Notifications
You must be signed in to change notification settings - Fork 35
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge remote-tracking branch 'upstream/main' into git-lfs-files
- Loading branch information
Showing
7 changed files
with
131 additions
and
885 deletions.
There are no files selected for viewing
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,40 @@ | ||
import numpy, torch, sys | ||
import onnxruntime | ||
|
||
# import from e2eshark/tools to allow running in current dir, for run through | ||
# run.pl, commutils is symbolically linked to allow any rundir to work | ||
sys.path.insert(0, "../../../tools/stubs") | ||
from commonutils import E2ESHARK_CHECK_DEF | ||
|
||
# Create an instance of it for this test | ||
E2ESHARK_CHECK = dict(E2ESHARK_CHECK_DEF) | ||
|
||
|
||
# The generated or checked in onnx file must always be called model.onnx | ||
# the tools/stubs/onnxmodel.py is appended to model.py | ||
# to form runmodel.py in the rundirectory which is then taken | ||
# through flow | ||
|
||
|
||
# start an onnxrt session | ||
session = onnxruntime.InferenceSession("model.onnx", None) | ||
|
||
# Even if model is quantized, the inputs and outputs are | ||
# not, so apply float32 | ||
model_input_X = numpy.random.rand(1, 16).astype(numpy.float32) | ||
|
||
# gets X in inputs[0] and Y in inputs[1] | ||
inputs = session.get_inputs() | ||
# gets Z in outputs[0] | ||
outputs = session.get_outputs() | ||
|
||
|
||
model_output = session.run( | ||
[outputs[0].name], | ||
{inputs[0].name: model_input_X}, | ||
)[0] | ||
E2ESHARK_CHECK["input"] = [torch.from_numpy(model_input_X)] | ||
E2ESHARK_CHECK["output"] = [torch.from_numpy(arr) for arr in model_output] | ||
|
||
print("Input:", E2ESHARK_CHECK["input"]) | ||
print("Output:", E2ESHARK_CHECK["output"]) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,77 @@ | ||
# Copyright 2024 Advanced Micro Devices | ||
# | ||
# Licensed under the Apache License v2.0 with LLVM Exceptions. | ||
# See https://llvm.org/LICENSE.txt for license information. | ||
# SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||
|
||
# run.py creates runmodel.py by concatenating this file model.py | ||
# and tools/stubs/onnxmodel.py | ||
# Description: testing GatherND | ||
# See https://onnx.ai/onnx/intro/python.html for intro on creating | ||
# onnx model using python onnx API | ||
import numpy, torch, sys | ||
import onnxruntime | ||
from onnx import numpy_helper, TensorProto, save_model | ||
from onnx.helper import make_model, make_node, make_graph, make_tensor_value_info | ||
from onnx.checker import check_model | ||
|
||
# import from e2eshark/tools to allow running in current dir, for run through | ||
# run.pl, commutils is symbolically linked to allow any rundir to work | ||
sys.path.insert(0, "../../../tools/stubs") | ||
from commonutils import E2ESHARK_CHECK_DEF | ||
|
||
# Create an instance of it for this test | ||
E2ESHARK_CHECK = dict(E2ESHARK_CHECK_DEF) | ||
|
||
# Create an input (ValueInfoProto) | ||
D = make_tensor_value_info("D", TensorProto.FLOAT, [2, 2, 3]) | ||
I = make_tensor_value_info("I", TensorProto.INT64, [2, 3, 2]) | ||
|
||
# Create an output | ||
Z = make_tensor_value_info("Z", TensorProto.FLOAT, [2, 3, 3]) | ||
|
||
# Create a node (NodeProto) | ||
gather_nd_node = make_node( | ||
"GatherND", ["D", "I"], ["Z"], "gather_nd_node" # node name # inputs # outputs | ||
) | ||
|
||
# Create the graph (GraphProto) | ||
graph = make_graph( | ||
[gather_nd_node], | ||
"gather_nd_graph", | ||
[D, I], | ||
[Z], | ||
) | ||
|
||
# Create the model (ModelProto) | ||
onnx_model = make_model(graph) | ||
onnx_model.opset_import[0].version = 13 | ||
|
||
# Save the model | ||
# save_model(onnx_model, "model.onnx") | ||
with open("model.onnx", "wb") as f: | ||
f.write(onnx_model.SerializeToString()) | ||
|
||
|
||
session = onnxruntime.InferenceSession("model.onnx", None) | ||
model_input_D = numpy.random.randn(2, 2, 3).astype(numpy.float32) | ||
model_input_I = numpy.random.randint(2, size=(2, 3, 2)).astype(numpy.int64) | ||
# gets D in inputs[0] and I in inputs[1] | ||
inputs = session.get_inputs() | ||
# gets Z in outputs[0] | ||
outputs = session.get_outputs() | ||
|
||
model_output = session.run( | ||
[outputs[0].name], | ||
{inputs[0].name: model_input_D, inputs[1].name: model_input_I}, | ||
) | ||
|
||
# Moving to torch to handle bfloat16 as numpy does not support bfloat16 | ||
E2ESHARK_CHECK["input"] = [ | ||
torch.from_numpy(model_input_D), | ||
torch.from_numpy(model_input_I), | ||
] | ||
E2ESHARK_CHECK["output"] = [torch.from_numpy(arr) for arr in model_output] | ||
|
||
print("Input:", E2ESHARK_CHECK["input"]) | ||
print("Output:", E2ESHARK_CHECK["output"]) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.