conda create -n GDG python=3.8
conda activate GDG
pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113
# install dgl package
pip install dgl-1.0.1+cu113-cp38-cp38-manylinux1_x86_64.whl
pip install dglgo==0.0.2
pip install pycocotools tensorboard matplotlib wilds
You can download the CUB-DG dataset at here!
./train.sh [LOG_DIR_PATH] [arg_OPTIONS]
- If you want to train other algorithms, you should edit the
train.sh
file.
./eval.sh [LOG_DIR_PATH] [env0_CHECKPOINT] [env1_CHECKPOINT] [env2_CHECKPOINT] [env3_CHECKPOINT]
- If you want to evaluate other algorithms, you should edit the
eval.sh
file.
We modified the DomainBed repo to utilize natural language.
You have to download Domainbed dataset first.
For more information, please see the original repo.
To train the model on the domainbed, see DomainBed/PACS.sh
. DomainBed/PACS.sh is a shell file to train the model on the PACS dataset.