Skip to content

[ICPR 2024] Clustering-based Image-Text Graph Matching for Domain Generalization

Notifications You must be signed in to change notification settings

noparkee/Graph-Clustering-based-DG

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

[ICPR 2024] Clustering-based Image-Text Graph Matching for Domain Generalization

Set Environment

conda create -n GDG python=3.8

conda activate GDG

pip install torch==1.11.0+cu113 torchvision==0.12.0+cu113 torchaudio==0.11.0 --extra-index-url https://download.pytorch.org/whl/cu113

# install dgl package
pip install dgl-1.0.1+cu113-cp38-cp38-manylinux1_x86_64.whl
pip install dglgo==0.0.2

pip install pycocotools tensorboard matplotlib wilds

CUB-DG

Dataset

You can download the CUB-DG dataset at here!

How to Train?

./train.sh [LOG_DIR_PATH] [arg_OPTIONS]
  • If you want to train other algorithms, you should edit the train.sh file.

How to Evaluate?

./eval.sh [LOG_DIR_PATH] [env0_CHECKPOINT] [env1_CHECKPOINT] [env2_CHECKPOINT] [env3_CHECKPOINT]
  • If you want to evaluate other algorithms, you should edit the eval.sh file.

Domainbed

We modified the DomainBed repo to utilize natural language.
You have to download Domainbed dataset first. For more information, please see the original repo.

To train the model on the domainbed, see DomainBed/PACS.sh. DomainBed/PACS.sh is a shell file to train the model on the PACS dataset.

About

[ICPR 2024] Clustering-based Image-Text Graph Matching for Domain Generalization

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published