Skip to content
This repository has been archived by the owner on Oct 13, 2021. It is now read-only.

Commit

Permalink
Add OpenFace to nightly build (#672)
Browse files Browse the repository at this point in the history
  • Loading branch information
jiafatom authored Dec 19, 2020
1 parent c5a2f39 commit 7b613c9
Show file tree
Hide file tree
Showing 4 changed files with 291 additions and 0 deletions.
275 changes: 275 additions & 0 deletions applications/nightly_build/test_open_face.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,275 @@
###############################################################################
# Copyright (c) Microsoft Corporation. All rights reserved.
# Licensed under the MIT License. See License.txt in the project root for
# license information.
###############################################################################
import os
import sys
import unittest
import keras2onnx
import numpy as np
from keras2onnx.proto import keras, is_tf_keras
from os.path import dirname, abspath
sys.path.insert(0, os.path.join(dirname(abspath(__file__)), '../../tests/'))
from test_utils import run_onnx_runtime
import tensorflow as tf

Activation = keras.layers.Activation
AveragePooling2D = keras.layers.AveragePooling2D
BatchNormalization = keras.layers.BatchNormalization
concatenate = keras.layers.concatenate
Conv2D = keras.layers.Conv2D
Dense = keras.layers.Dense
Dropout = keras.layers.Dropout
Embedding = keras.layers.Embedding
Flatten = keras.layers.Flatten
Input = keras.layers.Input
Lambda = keras.layers.Lambda
LeakyReLU = keras.layers.LeakyReLU
MaxPooling2D = keras.layers.MaxPooling2D
multiply = keras.layers.multiply
Reshape = keras.layers.Reshape
UpSampling2D = keras.layers.UpSampling2D
ZeroPadding2D = keras.layers.ZeroPadding2D

Sequential = keras.models.Sequential
Model = keras.models.Model
K = keras.backend

# From https://github.com/serengil/deepface/blob/master/deepface/basemodels/OpenFace.py
def loadModel():
myInput = Input(shape=(96, 96, 3))

x = ZeroPadding2D(padding=(3, 3), input_shape=(96, 96, 3))(myInput)
x = Conv2D(64, (7, 7), strides=(2, 2), name='conv1')(x)
x = BatchNormalization(axis=3, epsilon=0.00001, name='bn1')(x)
x = Activation('relu')(x)
x = ZeroPadding2D(padding=(1, 1))(x)
x = MaxPooling2D(pool_size=3, strides=2)(x)
x = Lambda(lambda x: tf.nn.lrn(x, alpha=1e-4, beta=0.75), name='lrn_1')(x)
x = Conv2D(64, (1, 1), name='conv2')(x)
x = BatchNormalization(axis=3, epsilon=0.00001, name='bn2')(x)
x = Activation('relu')(x)
x = ZeroPadding2D(padding=(1, 1))(x)
x = Conv2D(192, (3, 3), name='conv3')(x)
x = BatchNormalization(axis=3, epsilon=0.00001, name='bn3')(x)
x = Activation('relu')(x)
x = Lambda(lambda x: tf.nn.lrn(x, alpha=1e-4, beta=0.75), name='lrn_2')(x) #x is equal added
x = ZeroPadding2D(padding=(1, 1))(x)
x = MaxPooling2D(pool_size=3, strides=2)(x)

# Inception3a
inception_3a_3x3 = Conv2D(96, (1, 1), name='inception_3a_3x3_conv1')(x)
inception_3a_3x3 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3a_3x3_bn1')(inception_3a_3x3)
inception_3a_3x3 = Activation('relu')(inception_3a_3x3)
inception_3a_3x3 = ZeroPadding2D(padding=(1, 1))(inception_3a_3x3)
inception_3a_3x3 = Conv2D(128, (3, 3), name='inception_3a_3x3_conv2')(inception_3a_3x3)
inception_3a_3x3 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3a_3x3_bn2')(inception_3a_3x3)
inception_3a_3x3 = Activation('relu')(inception_3a_3x3)

inception_3a_5x5 = Conv2D(16, (1, 1), name='inception_3a_5x5_conv1')(x)
inception_3a_5x5 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3a_5x5_bn1')(inception_3a_5x5)
inception_3a_5x5 = Activation('relu')(inception_3a_5x5)
inception_3a_5x5 = ZeroPadding2D(padding=(2, 2))(inception_3a_5x5)
inception_3a_5x5 = Conv2D(32, (5, 5), name='inception_3a_5x5_conv2')(inception_3a_5x5)
inception_3a_5x5 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3a_5x5_bn2')(inception_3a_5x5)
inception_3a_5x5 = Activation('relu')(inception_3a_5x5)

inception_3a_pool = MaxPooling2D(pool_size=3, strides=2)(x)
inception_3a_pool = Conv2D(32, (1, 1), name='inception_3a_pool_conv')(inception_3a_pool)
inception_3a_pool = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3a_pool_bn')(inception_3a_pool)
inception_3a_pool = Activation('relu')(inception_3a_pool)
inception_3a_pool = ZeroPadding2D(padding=((3, 4), (3, 4)))(inception_3a_pool)

inception_3a_1x1 = Conv2D(64, (1, 1), name='inception_3a_1x1_conv')(x)
inception_3a_1x1 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3a_1x1_bn')(inception_3a_1x1)
inception_3a_1x1 = Activation('relu')(inception_3a_1x1)

inception_3a = concatenate([inception_3a_3x3, inception_3a_5x5, inception_3a_pool, inception_3a_1x1], axis=3)

# Inception3b
inception_3b_3x3 = Conv2D(96, (1, 1), name='inception_3b_3x3_conv1')(inception_3a)
inception_3b_3x3 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3b_3x3_bn1')(inception_3b_3x3)
inception_3b_3x3 = Activation('relu')(inception_3b_3x3)
inception_3b_3x3 = ZeroPadding2D(padding=(1, 1))(inception_3b_3x3)
inception_3b_3x3 = Conv2D(128, (3, 3), name='inception_3b_3x3_conv2')(inception_3b_3x3)
inception_3b_3x3 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3b_3x3_bn2')(inception_3b_3x3)
inception_3b_3x3 = Activation('relu')(inception_3b_3x3)

inception_3b_5x5 = Conv2D(32, (1, 1), name='inception_3b_5x5_conv1')(inception_3a)
inception_3b_5x5 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3b_5x5_bn1')(inception_3b_5x5)
inception_3b_5x5 = Activation('relu')(inception_3b_5x5)
inception_3b_5x5 = ZeroPadding2D(padding=(2, 2))(inception_3b_5x5)
inception_3b_5x5 = Conv2D(64, (5, 5), name='inception_3b_5x5_conv2')(inception_3b_5x5)
inception_3b_5x5 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3b_5x5_bn2')(inception_3b_5x5)
inception_3b_5x5 = Activation('relu')(inception_3b_5x5)

inception_3b_pool = Lambda(lambda x: x**2, name='power2_3b')(inception_3a)
inception_3b_pool = AveragePooling2D(pool_size=(3, 3), strides=(3, 3))(inception_3b_pool)
inception_3b_pool = Lambda(lambda x: x*9, name='mult9_3b')(inception_3b_pool)
inception_3b_pool = Lambda(lambda x: K.sqrt(x), name='sqrt_3b')(inception_3b_pool)
inception_3b_pool = Conv2D(64, (1, 1), name='inception_3b_pool_conv')(inception_3b_pool)
inception_3b_pool = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3b_pool_bn')(inception_3b_pool)
inception_3b_pool = Activation('relu')(inception_3b_pool)
inception_3b_pool = ZeroPadding2D(padding=(4, 4))(inception_3b_pool)

inception_3b_1x1 = Conv2D(64, (1, 1), name='inception_3b_1x1_conv')(inception_3a)
inception_3b_1x1 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3b_1x1_bn')(inception_3b_1x1)
inception_3b_1x1 = Activation('relu')(inception_3b_1x1)

inception_3b = concatenate([inception_3b_3x3, inception_3b_5x5, inception_3b_pool, inception_3b_1x1], axis=3)

# Inception3c
inception_3c_3x3 = Conv2D(128, (1, 1), strides=(1, 1), name='inception_3c_3x3_conv1')(inception_3b)
inception_3c_3x3 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3c_3x3_bn1')(inception_3c_3x3)
inception_3c_3x3 = Activation('relu')(inception_3c_3x3)
inception_3c_3x3 = ZeroPadding2D(padding=(1, 1))(inception_3c_3x3)
inception_3c_3x3 = Conv2D(256, (3, 3), strides=(2, 2), name='inception_3c_3x3_conv'+'2')(inception_3c_3x3)
inception_3c_3x3 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3c_3x3_bn'+'2')(inception_3c_3x3)
inception_3c_3x3 = Activation('relu')(inception_3c_3x3)

inception_3c_5x5 = Conv2D(32, (1, 1), strides=(1, 1), name='inception_3c_5x5_conv1')(inception_3b)
inception_3c_5x5 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3c_5x5_bn1')(inception_3c_5x5)
inception_3c_5x5 = Activation('relu')(inception_3c_5x5)
inception_3c_5x5 = ZeroPadding2D(padding=(2, 2))(inception_3c_5x5)
inception_3c_5x5 = Conv2D(64, (5, 5), strides=(2, 2), name='inception_3c_5x5_conv'+'2')(inception_3c_5x5)
inception_3c_5x5 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_3c_5x5_bn'+'2')(inception_3c_5x5)
inception_3c_5x5 = Activation('relu')(inception_3c_5x5)

inception_3c_pool = MaxPooling2D(pool_size=3, strides=2)(inception_3b)
inception_3c_pool = ZeroPadding2D(padding=((0, 1), (0, 1)))(inception_3c_pool)

inception_3c = concatenate([inception_3c_3x3, inception_3c_5x5, inception_3c_pool], axis=3)

#inception 4a
inception_4a_3x3 = Conv2D(96, (1, 1), strides=(1, 1), name='inception_4a_3x3_conv'+'1')(inception_3c)
inception_4a_3x3 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_4a_3x3_bn'+'1')(inception_4a_3x3)
inception_4a_3x3 = Activation('relu')(inception_4a_3x3)
inception_4a_3x3 = ZeroPadding2D(padding=(1, 1))(inception_4a_3x3)
inception_4a_3x3 = Conv2D(192, (3, 3), strides=(1, 1), name='inception_4a_3x3_conv'+'2')(inception_4a_3x3)
inception_4a_3x3 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_4a_3x3_bn'+'2')(inception_4a_3x3)
inception_4a_3x3 = Activation('relu')(inception_4a_3x3)

inception_4a_5x5 = Conv2D(32, (1,1), strides=(1,1), name='inception_4a_5x5_conv1')(inception_3c)
inception_4a_5x5 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_4a_5x5_bn1')(inception_4a_5x5)
inception_4a_5x5 = Activation('relu')(inception_4a_5x5)
inception_4a_5x5 = ZeroPadding2D(padding=(2,2))(inception_4a_5x5)
inception_4a_5x5 = Conv2D(64, (5,5), strides=(1,1), name='inception_4a_5x5_conv'+'2')(inception_4a_5x5)
inception_4a_5x5 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_4a_5x5_bn'+'2')(inception_4a_5x5)
inception_4a_5x5 = Activation('relu')(inception_4a_5x5)

inception_4a_pool = Lambda(lambda x: x**2, name='power2_4a')(inception_3c)
inception_4a_pool = AveragePooling2D(pool_size=(3, 3), strides=(3, 3))(inception_4a_pool)
inception_4a_pool = Lambda(lambda x: x*9, name='mult9_4a')(inception_4a_pool)
inception_4a_pool = Lambda(lambda x: K.sqrt(x), name='sqrt_4a')(inception_4a_pool)

inception_4a_pool = Conv2D(128, (1,1), strides=(1,1), name='inception_4a_pool_conv'+'')(inception_4a_pool)
inception_4a_pool = BatchNormalization(axis=3, epsilon=0.00001, name='inception_4a_pool_bn'+'')(inception_4a_pool)
inception_4a_pool = Activation('relu')(inception_4a_pool)
inception_4a_pool = ZeroPadding2D(padding=(2, 2))(inception_4a_pool)

inception_4a_1x1 = Conv2D(256, (1, 1), strides=(1, 1), name='inception_4a_1x1_conv'+'')(inception_3c)
inception_4a_1x1 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_4a_1x1_bn'+'')(inception_4a_1x1)
inception_4a_1x1 = Activation('relu')(inception_4a_1x1)

inception_4a = concatenate([inception_4a_3x3, inception_4a_5x5, inception_4a_pool, inception_4a_1x1], axis=3)

#inception4e
inception_4e_3x3 = Conv2D(160, (1,1), strides=(1,1), name='inception_4e_3x3_conv'+'1')(inception_4a)
inception_4e_3x3 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_4e_3x3_bn'+'1')(inception_4e_3x3)
inception_4e_3x3 = Activation('relu')(inception_4e_3x3)
inception_4e_3x3 = ZeroPadding2D(padding=(1, 1))(inception_4e_3x3)
inception_4e_3x3 = Conv2D(256, (3,3), strides=(2,2), name='inception_4e_3x3_conv'+'2')(inception_4e_3x3)
inception_4e_3x3 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_4e_3x3_bn'+'2')(inception_4e_3x3)
inception_4e_3x3 = Activation('relu')(inception_4e_3x3)

inception_4e_5x5 = Conv2D(64, (1,1), strides=(1,1), name='inception_4e_5x5_conv'+'1')(inception_4a)
inception_4e_5x5 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_4e_5x5_bn'+'1')(inception_4e_5x5)
inception_4e_5x5 = Activation('relu')(inception_4e_5x5)
inception_4e_5x5 = ZeroPadding2D(padding=(2, 2))(inception_4e_5x5)
inception_4e_5x5 = Conv2D(128, (5,5), strides=(2,2), name='inception_4e_5x5_conv'+'2')(inception_4e_5x5)
inception_4e_5x5 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_4e_5x5_bn'+'2')(inception_4e_5x5)
inception_4e_5x5 = Activation('relu')(inception_4e_5x5)

inception_4e_pool = MaxPooling2D(pool_size=3, strides=2)(inception_4a)
inception_4e_pool = ZeroPadding2D(padding=((0, 1), (0, 1)))(inception_4e_pool)

inception_4e = concatenate([inception_4e_3x3, inception_4e_5x5, inception_4e_pool], axis=3)

#inception5a
inception_5a_3x3 = Conv2D(96, (1,1), strides=(1,1), name='inception_5a_3x3_conv'+'1')(inception_4e)
inception_5a_3x3 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_5a_3x3_bn'+'1')(inception_5a_3x3)
inception_5a_3x3 = Activation('relu')(inception_5a_3x3)
inception_5a_3x3 = ZeroPadding2D(padding=(1, 1))(inception_5a_3x3)
inception_5a_3x3 = Conv2D(384, (3,3), strides=(1,1), name='inception_5a_3x3_conv'+'2')(inception_5a_3x3)
inception_5a_3x3 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_5a_3x3_bn'+'2')(inception_5a_3x3)
inception_5a_3x3 = Activation('relu')(inception_5a_3x3)

inception_5a_pool = Lambda(lambda x: x**2, name='power2_5a')(inception_4e)
inception_5a_pool = AveragePooling2D(pool_size=(3, 3), strides=(3, 3))(inception_5a_pool)
inception_5a_pool = Lambda(lambda x: x*9, name='mult9_5a')(inception_5a_pool)
inception_5a_pool = Lambda(lambda x: K.sqrt(x), name='sqrt_5a')(inception_5a_pool)

inception_5a_pool = Conv2D(96, (1,1), strides=(1,1), name='inception_5a_pool_conv'+'')(inception_5a_pool)
inception_5a_pool = BatchNormalization(axis=3, epsilon=0.00001, name='inception_5a_pool_bn'+'')(inception_5a_pool)
inception_5a_pool = Activation('relu')(inception_5a_pool)
inception_5a_pool = ZeroPadding2D(padding=(1,1))(inception_5a_pool)

inception_5a_1x1 = Conv2D(256, (1,1), strides=(1,1), name='inception_5a_1x1_conv'+'')(inception_4e)
inception_5a_1x1 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_5a_1x1_bn'+'')(inception_5a_1x1)
inception_5a_1x1 = Activation('relu')(inception_5a_1x1)

inception_5a = concatenate([inception_5a_3x3, inception_5a_pool, inception_5a_1x1], axis=3)

#inception_5b
inception_5b_3x3 = Conv2D(96, (1,1), strides=(1,1), name='inception_5b_3x3_conv'+'1')(inception_5a)
inception_5b_3x3 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_5b_3x3_bn'+'1')(inception_5b_3x3)
inception_5b_3x3 = Activation('relu')(inception_5b_3x3)
inception_5b_3x3 = ZeroPadding2D(padding=(1,1))(inception_5b_3x3)
inception_5b_3x3 = Conv2D(384, (3,3), strides=(1,1), name='inception_5b_3x3_conv'+'2')(inception_5b_3x3)
inception_5b_3x3 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_5b_3x3_bn'+'2')(inception_5b_3x3)
inception_5b_3x3 = Activation('relu')(inception_5b_3x3)

inception_5b_pool = MaxPooling2D(pool_size=3, strides=2)(inception_5a)

inception_5b_pool = Conv2D(96, (1,1), strides=(1,1), name='inception_5b_pool_conv'+'')(inception_5b_pool)
inception_5b_pool = BatchNormalization(axis=3, epsilon=0.00001, name='inception_5b_pool_bn'+'')(inception_5b_pool)
inception_5b_pool = Activation('relu')(inception_5b_pool)

inception_5b_pool = ZeroPadding2D(padding=(1, 1))(inception_5b_pool)

inception_5b_1x1 = Conv2D(256, (1,1), strides=(1,1), name='inception_5b_1x1_conv'+'')(inception_5a)
inception_5b_1x1 = BatchNormalization(axis=3, epsilon=0.00001, name='inception_5b_1x1_bn'+'')(inception_5b_1x1)
inception_5b_1x1 = Activation('relu')(inception_5b_1x1)

inception_5b = concatenate([inception_5b_3x3, inception_5b_pool, inception_5b_1x1], axis=3)

av_pool = AveragePooling2D(pool_size=(3, 3), strides=(1, 1))(inception_5b)
reshape_layer = Flatten()(av_pool)
dense_layer = Dense(128, name='dense_layer')(reshape_layer)
norm_layer = Lambda(lambda x: K.l2_normalize(x, axis=1), name='norm_layer')(dense_layer)

# Final Model
model = Model(inputs=[myInput], outputs=norm_layer)

return model

class TestOpenFace(unittest.TestCase):

def setUp(self):
self.model_files = []

def tearDown(self):
for fl in self.model_files:
os.remove(fl)

def test_OpenFace(self):
keras_model = loadModel()
x = np.random.rand(2, 96, 96, 3).astype(np.float32)
expected = keras_model.predict(x)
onnx_model = keras2onnx.convert_keras(keras_model, keras_model.name)
self.assertTrue(run_onnx_runtime(onnx_model.graph.name, onnx_model, x, expected, self.model_files))


if __name__ == "__main__":
unittest.main()
15 changes: 15 additions & 0 deletions keras2onnx/_builtin.py
Original file line number Diff line number Diff line change
Expand Up @@ -1055,6 +1055,21 @@ def convert_tf_logsoftmax(scope, operator, container):
axis=axis)


@converter_func(TYPES.LRN)
def convert_tf_lrn(scope, operator, container):
node = operator.raw_operator
attrs = _to_onnx_attrs(node)
attrs['size'] = 2 * attrs['depth_radius'] + 1
del attrs['depth_radius']
oopb = OnnxOperatorBuilder(container, scope)
oopb.add_node_with_output('LRN',
operator.input_full_names,
operator.output_full_names,
name=operator.full_name,
op_version=1,
**attrs)


def _convert_tf_maximum_minimum(scope, operator, container, oopb, apply_func):
node = operator.raw_operator
supported_types = [oopb.double, oopb.float, oopb.float16]
Expand Down
1 change: 1 addition & 0 deletions keras2onnx/_consts.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,6 +50,7 @@ class TYPES:
LogicalAnd = 'LogicalAnd'
LogicalNot = 'LogicalNot'
LogSoftmax = 'LogSoftmax'
LRN = 'LRN'
MatMul = 'MatMul'
Max = 'Max'
Maximum = 'Maximum'
Expand Down

0 comments on commit 7b613c9

Please sign in to comment.