Skip to content

Oms API GET Run Microdata csv aggregated

amc1999 edited this page Apr 14, 2024 · 3 revisions

Aggregate microdata values and read it as csv file.

Aggregate microdata value attributes, group by dimension attributes and get it as response stream UTF-8 Entity.csv file attachment, optionally starts with byte order mark (BOM).

Result can include multiple aggregations of value attributes (float of integer type) and group by dimension attributes (enum-based or bool type). Aggregation(s) is a comma-separated list of Model Output Expressions of microdata value attributes. For example, two aggregations: OM_AVG(Income) , OM_MAX(Salary + Pension) and group by two dimension attributes: AgeGroup , Sex.

It is also possible to use parameter(s) in calculation, parameter must be a scalar of float or integer type. For example: OM_COUNT_IF(Income > param.High), where param.High is a value of scalar parameter High in that model run.

Enum-based microdata attributes returned as enum codes.

Following aggregation functions avaliable:

  • OM_AVG mean of accumulators sub-values
  • OM_SUM sum of accumulators sub-values
  • OM_COUNT count of accumulators sub-values (excluding NULL's)
  • OM_COUNT_IF count values matching condition
  • OM_MAX maximum of accumulators sub-values
  • OM_MIN minimum of accumulators sub-values
  • OM_VAR variance of accumulators sub-values
  • OM_SD standard deviation of accumulators sub-values
  • OM_SE standard error of accumulators sub-values
  • OM_CV coefficient of variation of accumulators sub-values

For more details please see: Model Output Expressions

Methods:

GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/calc/:calc/csv
GET /api/model/:model/run/:run/microdata/:name/group-by/:group-by/calc/:calc/csv-bom

Arguments:

:model - (required) model digest or model name

Model can be identified by digest or by model name. It is recommended to use digest because it is uniquely identifies model. It is possible to use model name, which is more human readable than digest, but if there are multiple models with same name in database than result is undefined.

:run - (required) model run digest, run stamp or run name

Model run can be identified by run digest, run stamp or run name. It is recommended to use digest because it is uniquely identifies model run. Run stamp, if not explicitly specified as model run option, automatically generated as timestamp string, ex.: 2016_08_17_21_07_55_123. It is also possible to use name, which is more human readable than digest, but if there are multiple runs with same name in database than result is undefined.

:name - (required) microdata entity name
:group-by - (required) comma-separated list of dimension attribute(s) to group by aggreagated values, dimension attribute must be enum-based or boolean type.
:calc - (required) comma-separated list of aggregation of microdata value attribute(s), value attribute must be float of integer type.

Call examples:

http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/calc/OM_AVG(Income)/csv
http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/calc/OM_AVG(Income)/csv-bom
http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/calc/OM_AVG(Income),OM_AVG(Salary+Pension)/csv
http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/calc/OM_AVG(Income),OM_AVG(Salary+Pension)/csv-bom
http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/calc/OM_COUNT_IF(Income%3Eparam.StartingSeed)/csv

Note: OM_COUNT_IF(Income%3Eparam.StartingSeed) is is URL encoded: OM_COUNT_IF(Income>param.StartingSeed)

Return example:

curl http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/calc/OM_AVG(Income)/csv
run_digest,calc_name,AgeGroup,Sex,calc_value
a59c91359c4cd98f6275529c798d2485,ex_12000,10-20,M,13400876.3543608
a59c91359c4cd98f6275529c798d2485,ex_12000,10-20,F,13403741.8890926
a59c91359c4cd98f6275529c798d2485,ex_12000,20-30,M,134201344
a59c91359c4cd98f6275529c798d2485,ex_12000,20-30,F,134209535
a59c91359c4cd98f6275529c798d2485,ex_12000,30-40,M,134283254
a59c91359c4cd98f6275529c798d2485,ex_12000,30-40,F,134291445
a59c91359c4cd98f6275529c798d2485,ex_12000,40+,M,74645804.26116
a59c91359c4cd98f6275529c798d2485,ex_12000,40+,F,71069306.5718732
curl http://localhost:4040/api/model/modelOne/run/Microdata%20in%20database/microdata/Person/group-by/AgeGroup,Sex/calc/OM_AVG(Income),OM_AVG(Salary+Pension)/csv
run_digest,calc_name,AgeGroup,Sex,calc_value
a59c91359c4cd98f6275529c798d2485,ex_12000,10-20,M,13400876.3543608
a59c91359c4cd98f6275529c798d2485,ex_12000,10-20,F,13403741.8890926
a59c91359c4cd98f6275529c798d2485,ex_12000,20-30,M,134201344
a59c91359c4cd98f6275529c798d2485,ex_12000,20-30,F,134209535
a59c91359c4cd98f6275529c798d2485,ex_12000,30-40,M,134283254
a59c91359c4cd98f6275529c798d2485,ex_12000,30-40,F,134291445
a59c91359c4cd98f6275529c798d2485,ex_12000,40+,M,74645804.26116
a59c91359c4cd98f6275529c798d2485,ex_12000,40+,F,71069306.5718732
a59c91359c4cd98f6275529c798d2485,ex_12001,10-20,M,10050657.2657706
a59c91359c4cd98f6275529c798d2485,ex_12001,10-20,F,10052806.4168194
a59c91359c4cd98f6275529c798d2485,ex_12001,20-30,M,100651008
a59c91359c4cd98f6275529c798d2485,ex_12001,20-30,F,100657151.25
a59c91359c4cd98f6275529c798d2485,ex_12001,30-40,M,100712440.5
a59c91359c4cd98f6275529c798d2485,ex_12001,30-40,F,100718583.75
a59c91359c4cd98f6275529c798d2485,ex_12001,40+,M,60124633.8262087
a59c91359c4cd98f6275529c798d2485,ex_12001,40+,F,57665830.5421598

Home

Getting Started

Model development in OpenM++

Using OpenM++

Model Development Topics

OpenM++ web-service: API and cloud setup

Using OpenM++ from Python and R

Docker

OpenM++ Development

OpenM++ Design, Roadmap and Status

OpenM++ web-service API

GET Model Metadata

GET Model Extras

GET Model Run results metadata

GET Model Workset metadata: set of input parameters

Read Parameters, Output Tables or Microdata values

GET Parameters, Output Tables or Microdata values

GET Parameters, Output Tables or Microdata as CSV

GET Modeling Task metadata and task run history

Update Model Profile: set of key-value options

Update Model Workset: set of input parameters

Update Model Runs

Update Modeling Tasks

Run Models: run models and monitor progress

Download model, model run results or input parameters

Upload model runs or worksets (input scenarios)

Download and upload user files

User: manage user settings

Model run jobs and service state

Administrative: manage web-service state

Clone this wiki locally