-
Notifications
You must be signed in to change notification settings - Fork 66
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Adding L2 norm technique #236
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,104 @@ | ||
/* | ||
* Copyright OpenSearch Contributors | ||
* SPDX-License-Identifier: Apache-2.0 | ||
*/ | ||
|
||
package org.opensearch.neuralsearch.processor.combination; | ||
|
||
import java.util.List; | ||
import java.util.Locale; | ||
import java.util.Map; | ||
import java.util.Objects; | ||
import java.util.Optional; | ||
import java.util.Set; | ||
import java.util.stream.Collectors; | ||
|
||
/** | ||
* Abstracts combination of scores based on arithmetic mean method | ||
*/ | ||
public class HarmonicMeanScoreCombinationTechnique implements ScoreCombinationTechnique { | ||
|
||
public static final String TECHNIQUE_NAME = "arithmetic_mean"; | ||
public static final String PARAM_NAME_WEIGHTS = "weights"; | ||
private static final Set<String> SUPPORTED_PARAMS = Set.of(PARAM_NAME_WEIGHTS); | ||
private static final Float ZERO_SCORE = 0.0f; | ||
Check warning on line 24 in src/main/java/org/opensearch/neuralsearch/processor/combination/HarmonicMeanScoreCombinationTechnique.java Codecov / codecov/patchsrc/main/java/org/opensearch/neuralsearch/processor/combination/HarmonicMeanScoreCombinationTechnique.java#L23-L24
|
||
private final List<Float> weights; | ||
|
||
public HarmonicMeanScoreCombinationTechnique(final Map<String, Object> params) { | ||
validateParams(params); | ||
weights = getWeights(params); | ||
} | ||
Check warning on line 30 in src/main/java/org/opensearch/neuralsearch/processor/combination/HarmonicMeanScoreCombinationTechnique.java Codecov / codecov/patchsrc/main/java/org/opensearch/neuralsearch/processor/combination/HarmonicMeanScoreCombinationTechnique.java#L27-L30
|
||
|
||
private List<Float> getWeights(final Map<String, Object> params) { | ||
if (Objects.isNull(params) || params.isEmpty()) { | ||
return List.of(); | ||
Check warning on line 34 in src/main/java/org/opensearch/neuralsearch/processor/combination/HarmonicMeanScoreCombinationTechnique.java Codecov / codecov/patchsrc/main/java/org/opensearch/neuralsearch/processor/combination/HarmonicMeanScoreCombinationTechnique.java#L34
|
||
} | ||
// get weights, we don't need to check for instance as it's done during validation | ||
return ((List<Double>) params.getOrDefault(PARAM_NAME_WEIGHTS, List.of())).stream() | ||
.map(Double::floatValue) | ||
.collect(Collectors.toUnmodifiableList()); | ||
Check warning on line 39 in src/main/java/org/opensearch/neuralsearch/processor/combination/HarmonicMeanScoreCombinationTechnique.java Codecov / codecov/patchsrc/main/java/org/opensearch/neuralsearch/processor/combination/HarmonicMeanScoreCombinationTechnique.java#L37-L39
|
||
} | ||
|
||
/** | ||
* Arithmetic mean method for combining scores. | ||
* score = (weight1*score1 + weight2*score2 +...+ weightN*scoreN)/(weight1 + weight2 + ... + weightN) | ||
* | ||
* Zero (0.0) scores are excluded from number of scores N | ||
*/ | ||
@Override | ||
public float combine(final float[] scores) { | ||
float combinedScore = 0.0f; | ||
float weights = 0; | ||
Check warning on line 51 in src/main/java/org/opensearch/neuralsearch/processor/combination/HarmonicMeanScoreCombinationTechnique.java Codecov / codecov/patchsrc/main/java/org/opensearch/neuralsearch/processor/combination/HarmonicMeanScoreCombinationTechnique.java#L50-L51
|
||
for (int indexOfSubQuery = 0; indexOfSubQuery < scores.length; indexOfSubQuery++) { | ||
float score = scores[indexOfSubQuery]; | ||
Check warning on line 53 in src/main/java/org/opensearch/neuralsearch/processor/combination/HarmonicMeanScoreCombinationTechnique.java Codecov / codecov/patchsrc/main/java/org/opensearch/neuralsearch/processor/combination/HarmonicMeanScoreCombinationTechnique.java#L53
|
||
if (score >= 0.0) { | ||
float weight = getWeightForSubQuery(indexOfSubQuery); | ||
score = score * weight; | ||
combinedScore += score; | ||
weights += weight; | ||
Check warning on line 58 in src/main/java/org/opensearch/neuralsearch/processor/combination/HarmonicMeanScoreCombinationTechnique.java Codecov / codecov/patchsrc/main/java/org/opensearch/neuralsearch/processor/combination/HarmonicMeanScoreCombinationTechnique.java#L55-L58
|
||
} | ||
} | ||
if (weights == 0.0f) { | ||
return ZERO_SCORE; | ||
Check warning on line 62 in src/main/java/org/opensearch/neuralsearch/processor/combination/HarmonicMeanScoreCombinationTechnique.java Codecov / codecov/patchsrc/main/java/org/opensearch/neuralsearch/processor/combination/HarmonicMeanScoreCombinationTechnique.java#L62
|
||
} | ||
return combinedScore / weights; | ||
Check warning on line 64 in src/main/java/org/opensearch/neuralsearch/processor/combination/HarmonicMeanScoreCombinationTechnique.java Codecov / codecov/patchsrc/main/java/org/opensearch/neuralsearch/processor/combination/HarmonicMeanScoreCombinationTechnique.java#L64
|
||
} | ||
|
||
private void validateParams(final Map<String, Object> params) { | ||
if (Objects.isNull(params) || params.isEmpty()) { | ||
return; | ||
Check warning on line 69 in src/main/java/org/opensearch/neuralsearch/processor/combination/HarmonicMeanScoreCombinationTechnique.java Codecov / codecov/patchsrc/main/java/org/opensearch/neuralsearch/processor/combination/HarmonicMeanScoreCombinationTechnique.java#L69
|
||
} | ||
// check if only supported params are passed | ||
Optional<String> optionalNotSupportedParam = params.keySet() | ||
.stream() | ||
Check warning on line 73 in src/main/java/org/opensearch/neuralsearch/processor/combination/HarmonicMeanScoreCombinationTechnique.java Codecov / codecov/patchsrc/main/java/org/opensearch/neuralsearch/processor/combination/HarmonicMeanScoreCombinationTechnique.java#L72-L73
|
||
.filter(paramName -> !SUPPORTED_PARAMS.contains(paramName)) | ||
.findFirst(); | ||
Check warning on line 75 in src/main/java/org/opensearch/neuralsearch/processor/combination/HarmonicMeanScoreCombinationTechnique.java Codecov / codecov/patchsrc/main/java/org/opensearch/neuralsearch/processor/combination/HarmonicMeanScoreCombinationTechnique.java#L75
|
||
if (optionalNotSupportedParam.isPresent()) { | ||
throw new IllegalArgumentException( | ||
String.format( | ||
Check warning on line 78 in src/main/java/org/opensearch/neuralsearch/processor/combination/HarmonicMeanScoreCombinationTechnique.java Codecov / codecov/patchsrc/main/java/org/opensearch/neuralsearch/processor/combination/HarmonicMeanScoreCombinationTechnique.java#L77-L78
|
||
Locale.ROOT, | ||
"provided parameter for combination technique is not supported. supported parameters are [%s]", | ||
SUPPORTED_PARAMS.stream().collect(Collectors.joining(",")) | ||
Check warning on line 81 in src/main/java/org/opensearch/neuralsearch/processor/combination/HarmonicMeanScoreCombinationTechnique.java Codecov / codecov/patchsrc/main/java/org/opensearch/neuralsearch/processor/combination/HarmonicMeanScoreCombinationTechnique.java#L81
|
||
) | ||
); | ||
} | ||
|
||
// check param types | ||
if (params.keySet().stream().anyMatch(PARAM_NAME_WEIGHTS::equalsIgnoreCase)) { | ||
if (!(params.get(PARAM_NAME_WEIGHTS) instanceof List)) { | ||
throw new IllegalArgumentException( | ||
String.format(Locale.ROOT, "parameter [%s] must be a collection of numbers", PARAM_NAME_WEIGHTS) | ||
Check warning on line 90 in src/main/java/org/opensearch/neuralsearch/processor/combination/HarmonicMeanScoreCombinationTechnique.java Codecov / codecov/patchsrc/main/java/org/opensearch/neuralsearch/processor/combination/HarmonicMeanScoreCombinationTechnique.java#L89-L90
|
||
); | ||
} | ||
} | ||
} | ||
Check warning on line 94 in src/main/java/org/opensearch/neuralsearch/processor/combination/HarmonicMeanScoreCombinationTechnique.java Codecov / codecov/patchsrc/main/java/org/opensearch/neuralsearch/processor/combination/HarmonicMeanScoreCombinationTechnique.java#L94
|
||
|
||
/** | ||
* Get weight for sub-query based on its index in the hybrid search query. Use user provided weight or 1.0 otherwise | ||
* @param indexOfSubQuery 0-based index of sub-query in the Hybrid Search query | ||
* @return weight for sub-query, use one that is set in processor/pipeline definition or 1.0 as default | ||
*/ | ||
private float getWeightForSubQuery(int indexOfSubQuery) { | ||
return indexOfSubQuery < weights.size() ? weights.get(indexOfSubQuery) : 1.0f; | ||
} | ||
} |
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,88 @@ | ||
/* | ||
* Copyright OpenSearch Contributors | ||
* SPDX-License-Identifier: Apache-2.0 | ||
*/ | ||
|
||
package org.opensearch.neuralsearch.processor.normalization; | ||
|
||
import java.util.ArrayList; | ||
import java.util.List; | ||
import java.util.Objects; | ||
|
||
import org.apache.lucene.search.ScoreDoc; | ||
import org.apache.lucene.search.TopDocs; | ||
import org.opensearch.neuralsearch.search.CompoundTopDocs; | ||
|
||
/** | ||
* Abstracts normalization of scores based on L2 method | ||
*/ | ||
public class L2ScoreNormalizationTechnique implements ScoreNormalizationTechnique { | ||
|
||
public static final String TECHNIQUE_NAME = "l2"; | ||
private static final float MIN_SCORE = 0.001f; | ||
|
||
/** | ||
* L2 normalization method. | ||
* n_score_i = score_i/sqrt(score1^2 + score2^2 + ... + scoren^2) | ||
* Main algorithm steps: | ||
* - calculate sum of squares of all scores | ||
* - iterate over each result and update score as per formula above where "score" is raw score returned by Hybrid query | ||
*/ | ||
@Override | ||
public void normalize(final List<CompoundTopDocs> queryTopDocs) { | ||
// get l2 norms for each sub-query | ||
List<Float> normsPerSubquery = getL2Norm(queryTopDocs); | ||
|
||
// do normalization using actual score and l2 norm | ||
for (CompoundTopDocs compoundQueryTopDocs : queryTopDocs) { | ||
if (Objects.isNull(compoundQueryTopDocs)) { | ||
continue; | ||
Check warning on line 39 in src/main/java/org/opensearch/neuralsearch/processor/normalization/L2ScoreNormalizationTechnique.java Codecov / codecov/patchsrc/main/java/org/opensearch/neuralsearch/processor/normalization/L2ScoreNormalizationTechnique.java#L39
|
||
} | ||
List<TopDocs> topDocsPerSubQuery = compoundQueryTopDocs.getCompoundTopDocs(); | ||
for (int j = 0; j < topDocsPerSubQuery.size(); j++) { | ||
TopDocs subQueryTopDoc = topDocsPerSubQuery.get(j); | ||
for (ScoreDoc scoreDoc : subQueryTopDoc.scoreDocs) { | ||
scoreDoc.score = normalizeSingleScore(scoreDoc.score, normsPerSubquery.get(j)); | ||
} | ||
} | ||
} | ||
} | ||
|
||
private List<Float> getL2Norm(final List<CompoundTopDocs> queryTopDocs) { | ||
// find any non-empty compound top docs, it's either empty if shard does not have any results for all of sub-queries, | ||
// or it has results for all the sub-queries. In edge case of shard having results only for one sub-query, there will be TopDocs for | ||
// rest of sub-queries with zero total hits | ||
int numOfSubqueries = queryTopDocs.stream() | ||
.filter(Objects::nonNull) | ||
.filter(topDocs -> topDocs.getCompoundTopDocs().size() > 0) | ||
.findAny() | ||
.get() | ||
.getCompoundTopDocs() | ||
.size(); | ||
float[] l2Norms = new float[numOfSubqueries]; | ||
for (CompoundTopDocs compoundQueryTopDocs : queryTopDocs) { | ||
if (Objects.isNull(compoundQueryTopDocs)) { | ||
continue; | ||
Check warning on line 65 in src/main/java/org/opensearch/neuralsearch/processor/normalization/L2ScoreNormalizationTechnique.java Codecov / codecov/patchsrc/main/java/org/opensearch/neuralsearch/processor/normalization/L2ScoreNormalizationTechnique.java#L65
|
||
} | ||
List<TopDocs> topDocsPerSubQuery = compoundQueryTopDocs.getCompoundTopDocs(); | ||
int bound = topDocsPerSubQuery.size(); | ||
for (int index = 0; index < bound; index++) { | ||
for (ScoreDoc scoreDocs : topDocsPerSubQuery.get(index).scoreDocs) { | ||
l2Norms[index] += scoreDocs.score * scoreDocs.score; | ||
} | ||
} | ||
} | ||
for (int index = 0; index < l2Norms.length; index++) { | ||
l2Norms[index] = (float) Math.sqrt(l2Norms[index]); | ||
} | ||
List<Float> l2NormList = new ArrayList<>(); | ||
for (int index = 0; index < numOfSubqueries; index++) { | ||
l2NormList.add(l2Norms[index]); | ||
} | ||
return l2NormList; | ||
} | ||
|
||
private float normalizeSingleScore(final float score, final float l2Norm) { | ||
return l2Norm == 0 ? MIN_SCORE : score / l2Norm; | ||
} | ||
} |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
weighted harmonic mean = sum(wi) / sum(1/(wi*si))
https://en.wikipedia.org/wiki/Harmonic_mean
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thanks @HenryL27 , that's what I'm working now and it will be a new PR for harmonic mean and weighted geometric combination. Probably checked in this class incidentally in a half-ready form.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
ah, no worries. Thanks!