-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdataset.py
509 lines (469 loc) · 17.6 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
"""Classes encapsulating HDF5 files and numpy matrices.
"""
from util import *
class H5Node(object):
"""Creates group in H5 file.
Opens h5 file if not provided in argument 'h5'.
Parameters
----------
opt : argparse.Namespace
Arguements passed in command line.
h5 : tables.File
An instance of H5 file
grp : tables.Group
An instance of H5 group
auto_create_grps : boolean
if True ne group is created if it is non-existent
"""
def __init__(self, opt, h5 = None, grp = None, auto_create_grps = True ):
from tables import openFile,File
if isinstance(h5,File):
self.h5 = h5
else:
db = opt if isinstance(opt,str) else opt.database
self.h5 = openFile(db,'a')
self.group = self.h5.root if grp is None else grp
self.opt = opt
self.auto_create_grps = auto_create_grps
def _keyfnc(self,g):
return g._v_pathname.rsplit('/',1)[-1]
def _itemfnc(self,g):
return self._keyfnc(g),self._get_item(g)
def __len__(self):
return len(self.keys())
def __iter__(self):
from itertools import imap
return imap(self._keyfnc,self.h5.iterNodes(self.group))
def __reversed__(self):
return reversed(self.keys())
def iteritems(self):
from itertools import imap
return imap(self._itemfnc,self.h5.iterNodes(self.group))
def has_key(self,key):
return key in self
def iterkeys(self):
return iter(self)
def itervalues(self):
from itertools import imap
return imap(self._get_item,self.h5.iterNodes(self.group))
def keys(self):
return [ i for i in iter(self) ]
def values(self):
return [ v for v in self.itervalues() ]
def items(self):
return [ i for i in self.iteritems() ]
def get(self,key,d=None):
return self[key] if key in self else d
def __contains__(self, item):
from tables import NoSuchNodeError
try:
self.h5.getNode(self.group,item)
return True
except NoSuchNodeError:
return False
def __delitem__(self, key):
self.h5.getNode(self.group,key)._f_remove(True)
def _get_item(self,item):
from tables import Node,Group
if isinstance(item,Node):
if isinstance(item,Group):
result = H5Node(self.opt,h5=self.h5, grp=item)
if 'data' in result and 'fields' in result:
return Table(h5=result)
else:
return result
else:
return scalar(item)
def _get_current_path(self):
if self._is_root():
return '/'
else:
return self.group._v_pathname.rstrip('/')
def _is_root(self):
return self.group._v_pathname == '/'
def _get_absolute_path(self,key):
if key[0] == '/' and not self._is_root():
raise ValueError("the ``/`` character is not allowed in object names of non-root group: '%s'"%key)
path = key.rsplit('/',1)
if len(path)==2:
path,name = path
if self._is_root():
path = '/' + path.lstrip('/')
else:
path = self._get_current_path() +'/' + path
else:
name, = path
path = self._get_current_path()
return path,name
def __getitem__(self, item):
from tables import Node,NoSuchNodeError
if isinstance(item,Node):
return self._get_item(item)
else:
path,name = self._get_absolute_path(item)
try:
item = self.h5.getNode(path,name)
except NoSuchNodeError:
if not self.auto_create_grps:
raise
item = self.h5.createGroup(path,name,createparents=True)
return self._get_item(item)
def __setitem__(self, key, value):
path,name = self._get_absolute_path(key)
if not isSequenceType(value):
value = value,
self.h5.createArray(path,name,value, createparents=True)
def close(self):
self.h5.close()
def handle_exit(self, try_fnc, *arg,**kwarg):
"""Call 'try_fnc(opt,h5=h5)' in try-finally block. At the end close the file and exit.
"""
if not callable(try_fnc):
raise ValueError()
try:
try_fnc(self.opt, h5 = self)
except KeyboardInterrupt:
pass
finally:
self.close()
exit()
def _printNode(self, key, val, padding= '', last=False,maxdepth=None,maxcount=None):
from fabulous.color import highlight_blue,red,blue,green,cyan,yellow,bold
from tables import Array
if isinstance(val,H5Node):
val.printTree(padding=padding,last=last,maxdepth=maxdepth,maxcount=maxcount)
else:
if isinstance(val,Array):
val = yellow('Array(%s,__dtype__=%s)'% (','.join(str(i) for i in val.shape),val.dtype))
elif isinstance(val,Table):
val = green(val)
else:
val = red('%s,__dtype__=%s' % (str(val),type(val).__name__))
if last:
print '%s `%s [%s]' % (padding[:-1], cyan(key), val )
else:
print '%s`%s [%s]' % (padding, cyan(key), val )
def printTree(self, padding= '', last=False,maxdepth=3,maxcount=50):
"""Print tree contained in file.
Parameters
----------
padding : string
Arguements passed in command line.
last : boolean
Last node in sequence
maxdepth : number
Limit dept
maxcount : number
Limit count
"""
if maxdepth is not None and maxdepth<0:
print padding[:-1] + ' `'+bold(blue('...'))
return
if last:
print padding[:-1] + ' `' + bold(blue(self._keyfnc(self.group) + '/' ))
padding = padding[:-1]+' '
else:
print padding + '`' + bold(blue(self._keyfnc(self.group) + '/') )
count = len(self)
large = False
if maxcount is not None and count>maxcount:
count=maxcount+1
large = True
if self is None or not count:
print padding, ' `'+boldblack('[empty]')
else:
for key, val in self.iteritems():
count -= 1
if count==0 and large:
#print padding + ' |-'+(cyan('(...)'))
print padding + ' '+'`...'
break
self._printNode(key,val,padding=padding+' |',last=not count,maxdepth=maxdepth-1,maxcount=maxcount)
class Table(object):
"""Encapsulation of the numpy array, in order to conviently select/update data
.
Parameters
----------
data : array-like [n_rows, len(fields)]
the data representing this table
fields : tuple
tuple of strings representing columns
h5 : dataset.H5Node
Initialize Table from HDF5 file
"""
def __init__(self, data=None, fields=None, h5=None):
from numpy import array,ndarray
if h5 is not None:
self.h5 = h5
self.data = h5['data'][...]
self.fields = tuple(h5['fields'])
elif data is not None and fields is not None:
self.data = data if isinstance(data,ndarray) else array(data)
self.fields = tuple(fields)
else:
raise Exception('no data')
for f in self.fields:
setattr(self,f,Variable(f))
def __add__(self,other):
"""add two dataset objects. Must have same shape and fields."""
from numpy import vstack
if not isinstance(other,Table):
raise TypeError('Must be Dataset')
if self.fields != other.fields:
raise TypeError('Must have same fields')
if not len(self):
return Table(data=other.data,fields=self.fields)
elif not len(other):
return self
else:
return Table(data=vstack((self.data,other.data)),fields=self.fields)
def __len__(self):
"""return the length of the dataset."""
return self.data.shape[0]
def _check_fields(self,fields):
err = [f for f in fields if f not in self.fields]
if len(err):
raise ValueError('some fields not in this dataset (%s)' % err)
def _parse_key(self,key):
if isinstance(key, tuple):
if isinstance(key[0],(int,slice,Predicate)) or key[0] is Ellipsis:
pred,fields,retdset = key[0],key[1:],True
else:
pred,fields,retdset = None,key,False
elif isinstance(key,(int,slice,Predicate)) or key is Ellipsis:
pred,fields,retdset = key,None,True
else:
pred,fields,retdset = None,(key,),False
if isinstance(fields,tuple) and len(fields) == 1 and isinstance(fields[0],slice):
self._check_fields((fields[0].start,fields[0].stop))
elif fields is not None:
self._check_fields(fields)
return pred,fields,retdset
def __getitem__(self, key):
pred,fields,retdset = self._parse_key(key)
return self.select(pred,fields=fields,retdset=retdset)
def __delitem__(self, key):
pred,fields,retdset = self._parse_key(key)
d = self.select(pred,fields=fields,retdset=retdset)
self.data,self.fields = d.data,d.fields
def __setitem__(self, key, value):
if not len(self):
return
pred,fields,retdset = self._parse_key(key)
return self.set_fields(pred, fields, value)
def __contains__(self,item):
return item in self.fields
def __iter__(self):
return ( self[i] for i in xrange(len(self)) )
def keys(self):
return self.fields
def __str__(self):
return 'Table(%s,__len__=%d,__dtype__=%s)'%( ','.join(self.keys()), len(self),self.data.dtype)
def __repr__(self):
return '<dataset.Table(%s,__len__=%d,__dtype__=%s)>'%( ','.join(self.keys()), len(self),self.data.dtype)
def _getfield(self,x,f):
"""return vector containing the field"""
return x[...,self.fields.index(f)]
def _get_indexing(self,predicate,fields):
from numpy import array,newaxis,ndarray
# rows
if callable(predicate):
pred = predicate (self.data, self._getfield)
elif isinstance(predicate,int):
pred = slice(predicate,predicate+1)
elif isinstance(predicate, slice) or predicate is Ellipsis:
pred = predicate
else:
pred = Ellipsis
# columns
if isinstance(fields,tuple) and len(fields) == 1 :
if isinstance(fields[0],slice):
fldidx = slice(self.fields.index(fields[0].start),self.fields.index(fields[0].stop))
else:
fldidx = self.fields.index(fields[0])
fldidx = slice(fldidx,fldidx+1)
fields = self.fields[fldidx]
elif fields:
fldidx = array([ f in fields for f in self.fields ])
else:
fields = self.fields
fldidx = Ellipsis
return (pred,fldidx),fields
def squeeze(self):
return self.data.squeeze()
def select(self, predicate, order=None, retdset=None, fields=None, **kwargs):
"""Select submatrix based on predicate and fields.
Example:
size = PredicateFactory('size')
r = data.select((size >= 10) & (size < 15), fields = ('time', 'size'))
# select submatrix containing time and size columns and rows where size is in interval [10,15)
Parameters
----------
predicate : dataset.Predicate
Vector predicate to use for an indexing.
order : string
Determine field to be used for ordering of the result.
retdset : boolean
If true result is wrapped in new dataset.Table instance.
fields : tuple
Fields to retain in result.
Returns
-------
a submatrix or a new Table object based on predicate
"""
from numpy import argsort,ndarray
idx,fields = self._get_indexing(predicate,fields)
if isinstance(idx[0],ndarray) and isinstance(idx[1],ndarray):
result = self.data[idx[0],...][...,idx[1]]
else:
result = self.data[idx]
if order is not None and order in fields:
result = result[argsort( result[...,self.fields.index(order)] ),...]
if retdset:
return Table(data=result,fields=fields)
else:
return result
def add_field(self, field, default):
"""Add new column called 'field' and set its value to 'default'. It can be vector or scalar (it will be broadcast)."""
from numpy import hstack,ndarray
buff = ndarray( shape=(self.data.shape[0],1),dtype=self.data.dtype)
buff[:] = default
self.data,self.fields = hstack((self.data,buff)),self.fields+(field,)
def retain_fields(self, fields):
"""Keep column specified in 'fields', others are discarded."""
if any(f not in self.fields for f in fields):
raise ValueError('some fields not in this dataset')
self.data = self.data[...,tuple(self.fields.index(f) for f in fields)]
self.fields = fields
def set_fields(self, predicate, fields, value):
"""Set column specified by 'field', and rows matched by 'predicate' set its value to 'value'.
It can be vector or scalar (it will be broadcast).
"""
from numpy import ndarray
idx,fields = self._get_indexing(predicate,fields)
# evaluate
if callable(value):
self.data[idx] = value(self.data[idx])
else:
self.data[idx] = value
# return updated row count
return idx.shape[0] if isinstance(idx,ndarray) else idx[0].shape[0] if isinstance(idx[0],ndarray) else -1
def save(self,h5):
"""Save the content in 'h5' group.
Parameters
----------
h5 : H5Node
a node to store the content
"""
h5['data'] = self.data
h5['fields'] = self.fields
## convivence method for compsoting coditions.
class Predicate(object):
def __call__(self,arg, fnc):
raise Exception('not implementd')
def __and__(self, other):
return Conj(self,other)
def __or__(self, other):
return Dis(self,other)
def __xor__(self, other):
return Xor(self,other)
def __eq__(self, other):
return Equ(self,other)
class Term(Predicate):
def __init__(self, field,value):
self.value = value
self.field = field
class Always(Term):
def __call__(self, arg, fnc):
a = fnc(arg,self.field)
return a==a
class Never(Term):
def __call__(self, arg, fnc):
a = fnc(arg,self.field)
return a!=a
class Lt(Term):
def __call__(self,arg, fnc):
return fnc(arg,self.field) < self.value
class Gt(Term):
def __call__(self,arg, fnc):
return fnc(arg,self.field) > self.value
class Le(Term):
def __call__(self,arg, fnc):
return fnc(arg,self.field) <= self.value
class Ge(Term):
def __call__(self,arg, fnc):
return fnc(arg,self.field) >= self.value
class Eq(Term):
def __call__(self,arg, fnc):
return fnc(arg,self.field) == self.value
class Ne(Term):
def __call__(self,arg, fnc):
return fnc(arg,self.field) != self.value
class And(Term):
def __call__(self,arg, fnc):
return fnc(arg,self.field) & self.value
class Or(Term):
def __call__(self,arg, fnc):
return fnc(arg,self.field) | self.value
class In(Term):
def __call__(self,arg, fnc):
from operator import or_
d = fnc(arg,self.field) if callable(fnc) else fnc
return reduce(or_, (i==d for i in self.value))
class Binary(Predicate):
def __init__(self, reduction, *args):
super(Binary, self).__init__()
argsg = (a.preds if isinstance(a,self.__class__) else (a,) for a in args)
self.preds = tuple(i for sub in argsg for i in sub)
self.reduction = reduction if reduction else tuple
def __call__(self, arg, fnc):
return reduce(self.reduction, (p(arg,fnc) if callable(p) else p for p in self.preds))
class Conj(Binary):
def __init__(self, *args):
from operator import and_
super(Conj, self).__init__(and_,*args)
class Dis(Binary):
def __init__(self, *args):
from operator import or_
super(Dis, self).__init__(or_,*args)
class Xor(Binary):
def __init__(self, *args):
from operator import xor
super(Xor, self).__init__(xor,*args)
class Equ(Binary):
def __init__(self, *args):
from operator import eq
super(Equ, self).__init__(eq,*args)
class Variable(object):
"""Factory object to build an predicate instances.
Parameters
----------
field : string
a name of the variable
"""
def __init__(self, field):
self.field = field
def __lt__(self,other):
return Lt(self.field,other)
def __gt__(self,other):
return Gt(self.field,other)
def __eq__(self,other):
return Eq(self.field,other)
def __ne__(self,other):
return Ne(self.field,other)
def __le__(self,other):
return Le(self.field,other)
def __ge__(self,other):
return Ge(self.field,other)
def __contains__(self,other):
return In(self.field, other)
def __and__(self, other):
return And(self.field, other)
def __or__(self, other):
return Or(self.field, other)
def always(self):
return Always(self.field,None)
def never(self):
return Never(self.field,None)
def nonzero(self):
return Nz(self.field)