Skip to content

Project for the course of Computation statistics, summer semester 2021 MSc Economics University of Bonn

License

Notifications You must be signed in to change notification settings

pcschreiber1/LASSO_RF_for_Macro

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

65 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Comp_Stat_Project


Project for the course in Computational Statistics | Summer 2021, M.Sc. Economics, Bonn University | Philipp Schreiber

Variable Selection with High-Dimensional Low-Quality Data

A comparison of LASSO and Random Forest.


In this notebook, I contribute to the analysis of variable selection under high-dimensional low quality data by comparing the performance of the LASSO and relaxed Lasso to another method designed for efficient varaince reduction: Random Forests (RF). RF-based variable selection procedures have become especially popular in bio-medical sciences, but, so-far, are still uncommon in many strands of economics. Here we apply the data-driven technique of Genuer et al. (2010), which is implemented in the VSURF package. Three different simulation studies are conducted which closely emulate real-world macro-economic data and each illustrate the methodologies' behaviour under different challenges. Importantly, given the liability of direct comparisons of parametric and non-parametric methods to the underlying data generating process (DGP), we here focus on the techniques' relative performance under different levels of noise clarity. The discussion is complemented by an application to Sala-I-Martin's (1997b) famous "millions" data set, which has frequently been used to showcase variable selection strategies for macro-economic growth models.

About

Project for the course of Computation statistics, summer semester 2021 MSc Economics University of Bonn

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published