Skip to content

Commit

Permalink
Show that multiplication, conjugation are isomorphisms of groups
Browse files Browse the repository at this point in the history
  • Loading branch information
phijor committed Dec 25, 2024
1 parent 8e03a68 commit af361f2
Showing 1 changed file with 11 additions and 3 deletions.
14 changes: 11 additions & 3 deletions GpdCont/Delooping/Properties.agda
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@

open import GpdCont.Prelude
open import Cubical.Algebra.Group.Base as AbsGroup renaming (GroupStr to AbsGroupStr ; Group to AbsGroup)
open import Cubical.Algebra.Group.Properties using (module GroupTheory)
open import Cubical.Algebra.Group.Morphisms using (GroupHom ; IsGroupHom ; GroupEquiv)
open import Cubical.Algebra.Group.MorphismProperties using (isPropIsGroupHom ; makeIsGroupHom ; invGroupEquiv ; GroupEquiv→GroupHom)
open import Cubical.Algebra.Group.GroupPath using (uaGroup)
Expand All @@ -13,6 +14,7 @@ private

open import GpdCont.Groups.Base
open import GpdCont.Delooping.Base G as Delooping using (𝔹)
open import GpdCont.Groups.Solve using (solveGroup)
open import GpdCont.Connectivity using (isPathConnected ; isPathConnected→merePath)
open import GpdCont.Univalence using (ua→)

Expand Down Expand Up @@ -95,13 +97,19 @@ private
ua (conjugateEquiv $ g · h) ∎
where
shuffle : x inv h · (inv g · x · g) · h ≡ inv (g · h) · x · g · h
shuffle = {! !}
shuffle x =
inv h · (inv g · x · g) · h ≡⟨ lemma₁ (inv h) (inv g) x g h ⟩
(inv h · inv g) · x · g · h ≡⟨ cong (λ - - · x · g · h) (sym $ GroupTheory.invDistr G g h) ⟩
inv (g · h) · x · g · h ∎
where
lemma₁ : (h⁻¹ g⁻¹ x g h : ⟨ G ⟩) h⁻¹ · (g⁻¹ · x · g) · h ≡ (h⁻¹ · g⁻¹) · x · g · h
lemma₁ = solveGroup G

mulRightIso : (g : ⟨ G ⟩) Iso ⟨ G ⟩ ⟨ G ⟩
mulRightIso g .Iso.fun = _· g
mulRightIso g .Iso.inv = _· (inv g)
mulRightIso g .Iso.rightInv = {! !}
mulRightIso g .Iso.leftInv = {! !}
mulRightIso g .Iso.rightInv h = sym (G.·Assoc h (inv g) g) ∙ cong (h ·_) (G.·InvL g) ∙ G.·IdR h
mulRightIso g .Iso.leftInv h = sym (G.·Assoc h g (inv g)) ∙ cong (h ·_) (G.·InvR g) ∙ G.·IdR h

mulRightEquiv : (g : ⟨ G ⟩) ⟨ G ⟩ ≃ ⟨ G ⟩
mulRightEquiv g = isoToEquiv $ mulRightIso g
Expand Down

0 comments on commit af361f2

Please sign in to comment.