Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Code with LCL filter as H2 #2

Open
wants to merge 2 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
111 changes: 92 additions & 19 deletions examples/hwpv/pv1_poly.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,15 +18,20 @@
model_folder = r'./models'

idx_in = [0,1,2,3,4,5,6]
idx_out = [7,8,9]
idx_out = [7,8,9,10]
idx_out1 = idx_out[:2]
idx_out2 = idx_out[2:]
idx_out3 = idx_out[3:]

class pv1():
def __init__(self, training_config=None, sim_config=None):
self.init_to_none()
if training_config is not None:
self.load_training_config (training_config)
print('train_config')
if sim_config is not None:
self.load_sim_config (sim_config)
print('sim_config')

def init_to_none(self):
self.lr = None
Expand Down Expand Up @@ -58,6 +63,7 @@ def init_to_none(self):

def load_training_config(self, filename):
fp = open (filename, 'r')
print(filename)
config = json.load (fp)
fp.close()
self.lr = config['lr']
Expand Down Expand Up @@ -101,7 +107,7 @@ def read_lti(self, config):
dict['b_coeff'][i,j,:] = torch.Tensor(b)

block.load_state_dict (dict)
# print ('state dict', block.state_dict())
print ('state dict', block.state_dict())
return block

def read_net(self, config):
Expand Down Expand Up @@ -140,10 +146,10 @@ def load_sim_config(self, filename, model_only=True):
# print ('COL_U', self.COL_U)
# print ('COL_Y', self.COL_Y)
# print ('t_step', self.t_step)
# print ('F1', self.F1)
# print ('H1', self.H1)
# print ('F2', self.F2)
# print ('normfacs', self.normfacs)
# print ('F1', self.F1)
# print ('H1', self.H1)
# print ('F2', self.F2)
# print ('normfacs', self.normfacs)
#-------------------------------------

def append_net(self, model, label, F):
Expand Down Expand Up @@ -264,6 +270,7 @@ def loadNormalization(self, filename):
def loadAndApplyNormalization(self, filename):
self.loadNormalization(filename)
idx = 0
#for c in self.COL_U :
for c in self.COL_U + self.COL_Y:
dmean = self.normfacs[c]['offset']
drange = self.normfacs[c]['scale']
Expand All @@ -282,8 +289,16 @@ def initializeModelStructure(self):
self.y0 = torch.zeros((self.batch_size, self.na), dtype=torch.float)
self.u0 = torch.zeros((self.batch_size, self.nb), dtype=torch.float)
self.F2 = MimoStaticNonLinearity(in_channels=len(idx_out), out_channels=len(idx_out), n_hidden=self.nh2, activation=self.activation)

def trainModelCoefficients(self):
self.H2 = MimoLinearDynamicalOperator(in_channels=len(idx_out2), out_channels=len(idx_out3), n_b=3, n_a=1, n_k=0)

H2a_coeff = torch.tensor([[[0.00],[0.00 ]]])
self.H2.a_coeff = nn.Parameter(H2a_coeff)
H2b_coeff = torch.tensor([[[-0.955e-2,0.955e-2,0],[1.0095,-1.91e-2,0.955e-2]]])
self.H2.b_coeff = nn.Parameter(H2b_coeff)
print ('H2.a', self.H2.a_coeff)
print ('H2.b', self.H2.b_coeff)

def trainModelCoefficients(self, bMAE = False):
self.optimizer = torch.optim.Adam([
{'params': self.F1.parameters(), 'lr': self.lr},
{'params': self.H1.parameters(), 'lr': self.lr},
Expand All @@ -303,25 +318,62 @@ def trainModelCoefficients(self):
y_non = self.F1 (ub)
y_lin = self.H1 (y_non, self.y0, self.u0)
y_hat = self.F2 (y_lin)
y_hat1 = y_hat[:,:,0:2]
y_hat2 = y_hat[:,:,2:4]

# print('ub', ub.size())
# print('y_non', y_non.size())
# print('y_lin', y_lin.size())
# print('y_hat', y_hat.size())
# print('y_hat1', y_hat1.size())
# print('y_hat2', y_hat2.size())


y_lin2 = self.H2 (y_hat2, self.y0, self.u0)
#print('y_lin2', y_lin2.size())
#print('yb', yb.size())
y_hat3 = torch.cat((y_hat1,y_lin2), dim = 2)
# print('y_hat3', y_hat2.size())
# Compute fit loss
err_fit = yb - y_hat
loss_fit = torch.sum(torch.abs(err_fit))
err_fit0 = yb[:,:,0]*1 - y_hat3[:,:,0]*1
err_fit1 = yb[:,:,1]*1 - y_hat3[:,:,1]*1
err_fit2 = yb[:,:,2]/2 - y_hat3[:,:,2]/2

err_fit = torch.cat((err_fit0,err_fit1,err_fit2))
if bMAE:
loss_fit = torch.sum(torch.abs(err_fit))
#print('mae error')
else:
loss_fit = torch.mean(err_fit**2)



loss = loss_fit


LOSS.append(loss.item())
if itr % self.print_freq == 0:
print('Iter {:4d} of {:4d} | Loss {:12.4f}'.format (itr, self.num_iter, loss_fit))
print('Iter {:4d} of {:4d} | Loss {:12.4f}'.format (itr, self.num_iter, loss))

# Optimize
loss.backward()
self.optimizer.step()
train_time = time.time() - start_time

# print ('F1', self.F1)
print ('H2.a', self.H2.a_coeff)
print ('H2.b', self.H2.b_coeff)
# print ('H1.out', self.H1.out_channels)
# print ('F2', self.F2)

return train_time, LOSS

def saveModelCoefficients(self, model_folder):
torch.save(self.F1.state_dict(), os.path.join(model_folder, "F1.pkl"))
torch.save(self.H1.state_dict(), os.path.join(model_folder, "H1.pkl"))
torch.save(self.F2.state_dict(), os.path.join(model_folder, "F2.pkl"))
torch.save(self.H2.state_dict(), os.path.join(model_folder, "H2.pkl"))


def loadModelCoefficients(self, model_folder):
B1 = torch.load(os.path.join(model_folder, "F1.pkl"))
Expand All @@ -330,6 +382,10 @@ def loadModelCoefficients(self, model_folder):
self.H1.load_state_dict(B2)
B3 = torch.load(os.path.join(model_folder, "F2.pkl"))
self.F2.load_state_dict(B3)
B4 = torch.load(os.path.join(model_folder, "H2.pkl"))
self.H2.load_state_dict(B4)



def exportModel(self, filename):
config = {'name':'PV1', 'type':'F1+H1+F2', 't_step': self.t_step}
Expand Down Expand Up @@ -372,21 +428,31 @@ def printStateDicts(self):
print ('F2', self.F2.state_dict())
print ('H1', self.H1.in_channels, self.H1.out_channels, self.H1.n_a, self.H1.n_b, self.H1.n_k)
print (self.H1.state_dict())
print ('H2', self.H2.in_channels, self.H2.out_channels, self.H2.n_a, self.H2.n_b, self.H2.n_k)
print (self.H2.state_dict())

def testOneCase(self, case_idx):
case_data = self.data_train[[case_idx],:,:]
ub = torch.tensor (case_data[:,:,idx_in])
y_non = self.F1 (ub)
y_lin = self.H1 (y_non, self.y0, self.u0)
y_hat = self.F2 (y_lin)
y_hat1 = y_hat[:,:,0:2]
y_hat2 = y_hat[:,:,2:4]
y_lin2 = self.H2 (y_hat2, self.y0, self.u0)
y_hat3 = torch.cat((y_hat1,y_lin2), dim = 2)

print (ub.shape, y_non.shape, y_lin.shape, y_hat.shape)
print ('H2', self.H2.in_channels, self.H2.out_channels, self.H2.n_a, self.H2.n_b, self.H2.n_k)
print (self.H2.state_dict())
# self.printStateDicts()
# print (y_lin)

y_hat = y_hat.detach().numpy()[[0], :, :]
y_true = np.transpose(case_data[0,:,idx_out])
rmse = dynonet.metrics.error_rmse(y_true, y_hat[0])
return rmse, y_hat, y_true, np.transpose(case_data[0,:,idx_in])
y_hat3 = y_hat3.detach().numpy()[[0], :, :]
y_hat2 = y_hat2.detach().numpy()[[0], :, :]
y_true = np.transpose(case_data[0,:,idx_out[:3]])
rmse = dynonet.metrics.error_rmse(y_true, y_hat3[0])
return rmse, y_hat3, y_true, np.transpose(case_data[0,:,idx_in]), y_hat2

def stepOneCase(self, case_idx):
case_data = self.data_train[case_idx,:,:]
Expand Down Expand Up @@ -419,28 +485,35 @@ def trainingErrors(self, bByCase=False):
y_non = self.F1 (ub)
y_lin = self.H1 (y_non, self.y0, self.u0)
y_hat = self.F2 (y_lin)
y_hat1 = y_hat[:,:,0:2]
y_hat2 = y_hat[:,:,2:4]
y_lin2 = self.H2 (y_hat2, self.y0, self.u0)
y_hat3 = torch.cat((y_hat1,y_lin2), dim = 2)

y_hat = y_hat.detach().numpy()
y_true = self.data_train[:,:,idx_out]
y_hat3 = y_hat3.detach().numpy()
y_true = self.data_train[:,:,idx_out[:3]]
self.n_cases = self.data_train.shape[0]

icol = 0
total_rmse = {}
total_mae = {}
if bByCase:
case_rmse = lst1 = [dict() for i in range(self.n_cases)]
case_mae = lst2 = [dict() for i in range(self.n_cases)]
else:
case_rmse = None
case_mae = None
for col in self.COL_Y:
SUMSQ = 0.0
MAE = 0.0
for icase in range(self.n_cases):
y1 = y_true[icase,:,icol]
y2 = y_hat[icase,:,icol]
y2 = y_hat3[icase,:,icol]
colmae = dynonet.metrics.error_mae(y1, y2)
colrms = dynonet.metrics.error_rmse(y1, y2)
if bByCase:
case_rmse[icase][col] = colrms
case_mae[icase][col] = colmae
MAE += colmae
SUMSQ += (colrms*colrms)
MAE /= self.n_cases
Expand All @@ -449,7 +522,7 @@ def trainingErrors(self, bByCase=False):
total_mae[col] = MAE
total_rmse[col] = RMSE
icol += 1
return total_rmse, total_mae, case_rmse
return total_rmse, total_mae, case_rmse, case_mae

def set_LCL_filter(self, Lf, Cf, Lc):
self.Lf = Lf
Expand Down
32 changes: 30 additions & 2 deletions examples/hwpv/pv1_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -7,18 +7,27 @@
#import pv1_fhf as pv1_model
#import pv1_model
#import pv1_feedback as pv1_model
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"

data_path = r'./data/pv1.hdf5'
model_folder = r'./models'

def plot_case(model, idx):
rmse, y_hat, y_true, u = model.testOneCase(idx)
rmse, y_hat, y_true, u, VsIs = model.testOneCase(idx)
# rmse, y_hat, y_true, u = model.stepOneCase(idx)
print ('column', model.COL_Y, 'RMS errors', rmse)
valstr = ' '.join('{:.4f}'.format(rms) for rms in rmse)
# print ('y_hat shape', y_hat.shape)
# print ('y_true shape', y_true.shape)
# print ('u shape', u.shape)

fig, ax = plt.subplots (1, 2, sharex = 'col', figsize=(7,4), constrained_layout=True)
ax[0].plot (model.t, VsIs[0,:,0]*290.83447265625 + 203.58287048339844, label='Vs')
ax[0].legend()
ax[1].plot (model.t, VsIs[0,:,1]*66.92162322998047 + 30.236408233642578, label='Is')
ax[1].legend()

plt.show()

fig, ax = plt.subplots (2, 5, sharex = 'col', figsize=(15,8), constrained_layout=True)
fig.suptitle ('Case {:d} Simulation; Output RMSE = {:s}'.format(idx, valstr))
Expand All @@ -43,13 +52,32 @@ def plot_case(model, idx):
if bNormalized:
scale = 1.0
offset = 0.0
print('offset',offset)
print('scale',scale)
#scale = 1.0
#offset = 0.0
ax[1,j].set_title ('Output {:s}'.format (col))
ax[1,j].plot (model.t, y_true[:,j]*scale + offset, label='y')
ax[1,j].plot (model.t, y_hat[0,:,j]*scale + offset, label='y_hat')
# ax[1,j].plot (model.t, y_hat[:,j]*scale + offset, label='y_hat')
ax[1,j].legend()
j += 1
plt.show()

plt.figure()
#plt.plot (model.t, y_true[:,2], label='Irms_true')
plt.plot (model.t, y_hat[0,:,2], label='Irms_hat')
plt.plot (model.t, VsIs[0,:,1], label='Is')
plt.legend()
plt.show()

plt.figure()
#plt.plot (model.t, y_true[:,2], label='Irms_true')
#plt.plot (model.t, y_hat[0,:,2], label='Irms_hat')
plt.plot (model.t, VsIs[0,:,1]-y_hat[0,:,2], label='Is - Irms')
plt.legend()
plt.show()


if __name__ == '__main__':

Expand All @@ -72,4 +100,4 @@ def plot_case(model, idx):
plot_case (model, idx)
else:
plot_case (model, case_idx)

9 changes: 6 additions & 3 deletions examples/hwpv/pv1_training.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@
#import pv1_fhf as pv1_model
#import pv1_model
#import pv1_feedback as pv1_model
os.environ["KMP_DUPLICATE_LIB_OK"]="TRUE"

data_path = r'./data/pv1.hdf5'
model_folder = r'./models'
Expand All @@ -15,18 +16,20 @@
model.loadTrainingData(data_path)
model.applyAndSaveNormalization(model_folder)
model.initializeModelStructure()
train_time, LOSS = model.trainModelCoefficients()
train_time, LOSS = model.trainModelCoefficients(bMAE=False)
model.saveModelCoefficients(model_folder)
# quit()
rmse, mae, case_rmse = model.trainingErrors(False)
rmse, mae, case_rmse, case_mae = model.trainingErrors(False)

nlookback = 10 * int(model.n_cases / model.batch_size)
recent_loss = LOSS[len(LOSS)-nlookback:]
# print (nlookback, recent_loss)
print ('COL_Y', model.COL_Y)
# print ('COL_Y', model.COL_Y)
valstr = ' '.join('{:.4f}'.format(rmse[col]) for col in model.COL_Y)
print ('Train time: {:.2f}, Recent loss: {:.2f}, RMS Errors: {:s}'.format (train_time,
np.mean(recent_loss), valstr))
valstr = ' '.join('{:.4f}'.format(mae[col]) for col in model.COL_Y)
print (' MAE Errors: {:s}'.format (valstr))

plt.figure()
plt.plot(LOSS)
Expand Down