-
Notifications
You must be signed in to change notification settings - Fork 41
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
16 changed files
with
935 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
from queries.common_utils import execute_all | ||
|
||
if __name__ == "__main__": | ||
execute_all("modin") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,58 @@ | ||
from __future__ import annotations | ||
|
||
from datetime import date | ||
|
||
import modin.pandas as pd | ||
|
||
from queries.modin import utils | ||
|
||
Q_NUM = 1 | ||
|
||
|
||
def q() -> None: | ||
VAR1 = date(1998, 9, 2) | ||
|
||
lineitem = utils.get_line_item_ds | ||
# first call one time to cache in case we don't include the IO times | ||
lineitem() | ||
|
||
def query() -> pd.DataFrame: | ||
nonlocal lineitem | ||
lineitem = lineitem() | ||
|
||
sel = lineitem.l_shipdate <= VAR1 | ||
lineitem_filtered = lineitem[sel] | ||
|
||
# This is lenient towards pandas as normally an optimizer should decide | ||
# that this could be computed before the groupby aggregation. | ||
# Other implementations don't enjoy this benefit. | ||
lineitem_filtered["disc_price"] = lineitem_filtered.l_extendedprice * ( | ||
1 - lineitem_filtered.l_discount | ||
) | ||
lineitem_filtered["charge"] = ( | ||
lineitem_filtered.l_extendedprice | ||
* (1 - lineitem_filtered.l_discount) | ||
* (1 + lineitem_filtered.l_tax) | ||
) | ||
gb = lineitem_filtered.groupby(["l_returnflag", "l_linestatus"], as_index=False) | ||
|
||
total = gb.agg( | ||
sum_qty=pd.NamedAgg(column="l_quantity", aggfunc="sum"), | ||
sum_base_price=pd.NamedAgg(column="l_extendedprice", aggfunc="sum"), | ||
sum_disc_price=pd.NamedAgg(column="disc_price", aggfunc="sum"), | ||
sum_charge=pd.NamedAgg(column="charge", aggfunc="sum"), | ||
avg_qty=pd.NamedAgg(column="l_quantity", aggfunc="mean"), | ||
avg_price=pd.NamedAgg(column="l_extendedprice", aggfunc="mean"), | ||
avg_disc=pd.NamedAgg(column="l_discount", aggfunc="mean"), | ||
count_order=pd.NamedAgg(column="l_orderkey", aggfunc="size"), | ||
) | ||
|
||
result_df = total.sort_values(["l_returnflag", "l_linestatus"]) | ||
|
||
return result_df | ||
|
||
utils.run_query(Q_NUM, query) | ||
|
||
|
||
if __name__ == "__main__": | ||
q() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,166 @@ | ||
from __future__ import annotations | ||
|
||
from typing import TYPE_CHECKING | ||
|
||
from queries.modin import utils | ||
|
||
if TYPE_CHECKING: | ||
import modin.pandas as pd | ||
|
||
Q_NUM = 2 | ||
|
||
|
||
def q() -> None: | ||
var1 = 15 | ||
var2 = "BRASS" | ||
var3 = "EUROPE" | ||
|
||
region_ds = utils.get_region_ds | ||
nation_ds = utils.get_nation_ds | ||
supplier_ds = utils.get_supplier_ds | ||
part_ds = utils.get_part_ds | ||
part_supp_ds = utils.get_part_supp_ds | ||
|
||
# first call one time to cache in case we don't include the IO times | ||
region_ds() | ||
nation_ds() | ||
supplier_ds() | ||
part_ds() | ||
part_supp_ds() | ||
|
||
def query() -> pd.DataFrame: | ||
nonlocal region_ds | ||
nonlocal nation_ds | ||
nonlocal supplier_ds | ||
nonlocal part_ds | ||
nonlocal part_supp_ds | ||
region_ds = region_ds() | ||
nation_ds = nation_ds() | ||
supplier_ds = supplier_ds() | ||
part_ds = part_ds() | ||
part_supp_ds = part_supp_ds() | ||
|
||
nation_filtered = nation_ds.loc[:, ["n_nationkey", "n_name", "n_regionkey"]] | ||
region_filtered = region_ds[(region_ds["r_name"] == var3)] | ||
region_filtered = region_filtered.loc[:, ["r_regionkey"]] | ||
r_n_merged = nation_filtered.merge( | ||
region_filtered, left_on="n_regionkey", right_on="r_regionkey", how="inner" | ||
) | ||
r_n_merged = r_n_merged.loc[:, ["n_nationkey", "n_name"]] | ||
supplier_filtered = supplier_ds.loc[ | ||
:, | ||
[ | ||
"s_suppkey", | ||
"s_name", | ||
"s_address", | ||
"s_nationkey", | ||
"s_phone", | ||
"s_acctbal", | ||
"s_comment", | ||
], | ||
] | ||
s_r_n_merged = r_n_merged.merge( | ||
supplier_filtered, | ||
left_on="n_nationkey", | ||
right_on="s_nationkey", | ||
how="inner", | ||
) | ||
s_r_n_merged = s_r_n_merged.loc[ | ||
:, | ||
[ | ||
"n_name", | ||
"s_suppkey", | ||
"s_name", | ||
"s_address", | ||
"s_phone", | ||
"s_acctbal", | ||
"s_comment", | ||
], | ||
] | ||
partsupp_filtered = part_supp_ds.loc[ | ||
:, ["ps_partkey", "ps_suppkey", "ps_supplycost"] | ||
] | ||
ps_s_r_n_merged = s_r_n_merged.merge( | ||
partsupp_filtered, left_on="s_suppkey", right_on="ps_suppkey", how="inner" | ||
) | ||
ps_s_r_n_merged = ps_s_r_n_merged.loc[ | ||
:, | ||
[ | ||
"n_name", | ||
"s_name", | ||
"s_address", | ||
"s_phone", | ||
"s_acctbal", | ||
"s_comment", | ||
"ps_partkey", | ||
"ps_supplycost", | ||
], | ||
] | ||
part_filtered = part_ds.loc[:, ["p_partkey", "p_mfgr", "p_size", "p_type"]] | ||
part_filtered = part_filtered[ | ||
(part_filtered["p_size"] == var1) | ||
& (part_filtered["p_type"].str.endswith(var2)) | ||
] | ||
part_filtered = part_filtered.loc[:, ["p_partkey", "p_mfgr"]] | ||
merged_df = part_filtered.merge( | ||
ps_s_r_n_merged, left_on="p_partkey", right_on="ps_partkey", how="inner" | ||
) | ||
merged_df = merged_df.loc[ | ||
:, | ||
[ | ||
"n_name", | ||
"s_name", | ||
"s_address", | ||
"s_phone", | ||
"s_acctbal", | ||
"s_comment", | ||
"ps_supplycost", | ||
"p_partkey", | ||
"p_mfgr", | ||
], | ||
] | ||
min_values = merged_df.groupby("p_partkey", as_index=False)[ | ||
"ps_supplycost" | ||
].min() | ||
min_values.columns = ["P_PARTKEY_CPY", "MIN_SUPPLYCOST"] | ||
merged_df = merged_df.merge( | ||
min_values, | ||
left_on=["p_partkey", "ps_supplycost"], | ||
right_on=["P_PARTKEY_CPY", "MIN_SUPPLYCOST"], | ||
how="inner", | ||
) | ||
result_df = merged_df.loc[ | ||
:, | ||
[ | ||
"s_acctbal", | ||
"s_name", | ||
"n_name", | ||
"p_partkey", | ||
"p_mfgr", | ||
"s_address", | ||
"s_phone", | ||
"s_comment", | ||
], | ||
] | ||
result_df = result_df.sort_values( | ||
by=[ | ||
"s_acctbal", | ||
"n_name", | ||
"s_name", | ||
"p_partkey", | ||
], | ||
ascending=[ | ||
False, | ||
True, | ||
True, | ||
True, | ||
], | ||
).head(100) | ||
|
||
return result_df | ||
|
||
utils.run_query(Q_NUM, query) | ||
|
||
|
||
if __name__ == "__main__": | ||
q() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,68 @@ | ||
from __future__ import annotations | ||
|
||
from datetime import date | ||
from typing import TYPE_CHECKING | ||
|
||
from queries.modin import utils | ||
|
||
if TYPE_CHECKING: | ||
import modin.pandas as pd | ||
|
||
Q_NUM = 3 | ||
|
||
|
||
def q() -> None: | ||
var1 = var2 = date(1995, 3, 15) | ||
var3 = "BUILDING" | ||
|
||
customer_ds = utils.get_customer_ds | ||
line_item_ds = utils.get_line_item_ds | ||
orders_ds = utils.get_orders_ds | ||
|
||
# first call one time to cache in case we don't include the IO times | ||
customer_ds() | ||
line_item_ds() | ||
orders_ds() | ||
|
||
def query() -> pd.DataFrame: | ||
nonlocal customer_ds | ||
nonlocal line_item_ds | ||
nonlocal orders_ds | ||
customer_ds = customer_ds() | ||
line_item_ds = line_item_ds() | ||
orders_ds = orders_ds() | ||
|
||
lineitem_filtered = line_item_ds.loc[ | ||
:, ["l_orderkey", "l_extendedprice", "l_discount", "l_shipdate"] | ||
] | ||
orders_filtered = orders_ds.loc[ | ||
:, ["o_orderkey", "o_custkey", "o_orderdate", "o_shippriority"] | ||
] | ||
customer_filtered = customer_ds.loc[:, ["c_mktsegment", "c_custkey"]] | ||
lsel = lineitem_filtered.l_shipdate > var1 | ||
osel = orders_filtered.o_orderdate < var2 | ||
csel = customer_filtered.c_mktsegment == var3 | ||
flineitem = lineitem_filtered[lsel] | ||
forders = orders_filtered[osel] | ||
fcustomer = customer_filtered[csel] | ||
jn1 = fcustomer.merge(forders, left_on="c_custkey", right_on="o_custkey") | ||
jn2 = jn1.merge(flineitem, left_on="o_orderkey", right_on="l_orderkey") | ||
jn2["revenue"] = jn2.l_extendedprice * (1 - jn2.l_discount) | ||
|
||
total = ( | ||
jn2.groupby( | ||
["l_orderkey", "o_orderdate", "o_shippriority"], as_index=False | ||
)["revenue"] | ||
.sum() | ||
.sort_values(["revenue"], ascending=False) | ||
) | ||
result_df = total.head(10).loc[ | ||
:, ["l_orderkey", "revenue", "o_orderdate", "o_shippriority"] | ||
] | ||
return result_df | ||
|
||
utils.run_query(Q_NUM, query) | ||
|
||
|
||
if __name__ == "__main__": | ||
q() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,48 @@ | ||
from __future__ import annotations | ||
|
||
from datetime import date | ||
from typing import TYPE_CHECKING | ||
|
||
from queries.modin import utils | ||
|
||
if TYPE_CHECKING: | ||
import modin.pandas as pd | ||
|
||
Q_NUM = 4 | ||
|
||
|
||
def q() -> None: | ||
date1 = date(1993, 10, 1) | ||
date2 = date(1993, 7, 1) | ||
|
||
line_item_ds = utils.get_line_item_ds | ||
orders_ds = utils.get_orders_ds | ||
|
||
# first call one time to cache in case we don't include the IO times | ||
line_item_ds() | ||
orders_ds() | ||
|
||
def query() -> pd.DataFrame: | ||
nonlocal line_item_ds | ||
nonlocal orders_ds | ||
line_item_ds = line_item_ds() | ||
orders_ds = orders_ds() | ||
|
||
lsel = line_item_ds.l_commitdate < line_item_ds.l_receiptdate | ||
osel = (orders_ds.o_orderdate < date1) & (orders_ds.o_orderdate >= date2) | ||
flineitem = line_item_ds[lsel] | ||
forders = orders_ds[osel] | ||
jn = forders[forders["o_orderkey"].isin(flineitem["l_orderkey"])] | ||
result_df = ( | ||
jn.groupby("o_orderpriority", as_index=False)["o_orderkey"] | ||
.count() | ||
.sort_values(["o_orderpriority"]) | ||
.rename(columns={"o_orderkey": "order_count"}) | ||
) | ||
return result_df | ||
|
||
utils.run_query(Q_NUM, query) | ||
|
||
|
||
if __name__ == "__main__": | ||
q() |
Oops, something went wrong.