Skip to content

Commit

Permalink
Add more examples
Browse files Browse the repository at this point in the history
  • Loading branch information
pomonam committed Mar 19, 2024
1 parent 3e9d45b commit f0b77f0
Showing 1 changed file with 66 additions and 66 deletions.
132 changes: 66 additions & 66 deletions tests/gpu_tests/ddp_test.py
Original file line number Diff line number Diff line change
Expand Up @@ -123,72 +123,72 @@ def test_lambda_matrices(self):
atol=1e-3,
rtol=1e-1,
)
# def test_pairwise_scores(self) -> None:
# pairwise_scores = self.analyzer.load_pairwise_scores(scores_name=OLD_SCORE_NAME)
#
# score_args = ScoreArguments(
# score_dtype=torch.float64,
# per_sample_gradient_dtype=torch.float64,
# precondition_dtype=torch.float64,
# )
# self.analyzer.compute_pairwise_scores(
# scores_name=NEW_SCORE_NAME,
# factors_name=OLD_FACTOR_NAME,
# query_dataset=self.eval_dataset,
# train_dataset=self.train_dataset,
# train_indices=list(range(TRAIN_INDICES)),
# query_indices=list(range(QUERY_INDICES)),
# per_device_query_batch_size=12,
# per_device_train_batch_size=512,
# score_args=score_args,
# overwrite_output_dir=True,
# )
# new_pairwise_scores = self.analyzer.load_pairwise_scores(scores_name=NEW_SCORE_NAME)
#
# if LOCAL_RANK == 0:
# print(f"Previous score: {pairwise_scores[ALL_MODULE_NAME][0]}")
# print(f"Previous shape: {pairwise_scores[ALL_MODULE_NAME].shape}")
# print(f"New score: {new_pairwise_scores[ALL_MODULE_NAME][0]}")
# print(f"New shape: {new_pairwise_scores[ALL_MODULE_NAME].shape}")
# assert check_tensor_dict_equivalence(
# pairwise_scores,
# new_pairwise_scores,
# atol=1e-5,
# rtol=1e-3,
# )
#
# def test_self_scores(self) -> None:
# self_scores = self.analyzer.load_self_scores(scores_name=OLD_SCORE_NAME)
#
# score_args = ScoreArguments(
# score_dtype=torch.float64,
# per_sample_gradient_dtype=torch.float64,
# precondition_dtype=torch.float64,
# )
# self.analyzer.compute_self_scores(
# scores_name=NEW_SCORE_NAME,
# factors_name=OLD_FACTOR_NAME,
# train_dataset=self.train_dataset,
# train_indices=list(range(TRAIN_INDICES)),
# per_device_train_batch_size=512,
# score_args=score_args,
# overwrite_output_dir=True,
# )
# new_self_scores = self.analyzer.load_self_scores(scores_name=NEW_SCORE_NAME)
#
# if LOCAL_RANK == 0:
# print(f"Previous score: {self_scores[ALL_MODULE_NAME]}")
# print(f"Previous shape: {self_scores[ALL_MODULE_NAME].shape}")
# print(f"New score: {new_self_scores[ALL_MODULE_NAME]}")
# print(f"New shape: {new_self_scores[ALL_MODULE_NAME].shape}")
# assert check_tensor_dict_equivalence(
# self_scores,
# new_self_scores,
# atol=1e-5,
# rtol=1e-3,
# )
#

def test_pairwise_scores(self) -> None:
pairwise_scores = self.analyzer.load_pairwise_scores(scores_name=OLD_SCORE_NAME)

score_args = ScoreArguments(
score_dtype=torch.float64,
per_sample_gradient_dtype=torch.float64,
precondition_dtype=torch.float64,
)
self.analyzer.compute_pairwise_scores(
scores_name=NEW_SCORE_NAME,
factors_name=OLD_FACTOR_NAME,
query_dataset=self.eval_dataset,
train_dataset=self.train_dataset,
train_indices=list(range(TRAIN_INDICES)),
query_indices=list(range(QUERY_INDICES)),
per_device_query_batch_size=12,
per_device_train_batch_size=512,
score_args=score_args,
overwrite_output_dir=True,
)
new_pairwise_scores = self.analyzer.load_pairwise_scores(scores_name=NEW_SCORE_NAME)

if LOCAL_RANK == 0:
print(f"Previous score: {pairwise_scores[ALL_MODULE_NAME][0]}")
print(f"Previous shape: {pairwise_scores[ALL_MODULE_NAME].shape}")
print(f"New score: {new_pairwise_scores[ALL_MODULE_NAME][0]}")
print(f"New shape: {new_pairwise_scores[ALL_MODULE_NAME].shape}")
assert check_tensor_dict_equivalence(
pairwise_scores,
new_pairwise_scores,
atol=1e-5,
rtol=1e-3,
)

def test_self_scores(self) -> None:
self_scores = self.analyzer.load_self_scores(scores_name=OLD_SCORE_NAME)

score_args = ScoreArguments(
score_dtype=torch.float64,
per_sample_gradient_dtype=torch.float64,
precondition_dtype=torch.float64,
)
self.analyzer.compute_self_scores(
scores_name=NEW_SCORE_NAME,
factors_name=OLD_FACTOR_NAME,
train_dataset=self.train_dataset,
train_indices=list(range(TRAIN_INDICES)),
per_device_train_batch_size=512,
score_args=score_args,
overwrite_output_dir=True,
)
new_self_scores = self.analyzer.load_self_scores(scores_name=NEW_SCORE_NAME)

if LOCAL_RANK == 0:
print(f"Previous score: {self_scores[ALL_MODULE_NAME]}")
print(f"Previous shape: {self_scores[ALL_MODULE_NAME].shape}")
print(f"New score: {new_self_scores[ALL_MODULE_NAME]}")
print(f"New shape: {new_self_scores[ALL_MODULE_NAME].shape}")
assert check_tensor_dict_equivalence(
self_scores,
new_self_scores,
atol=1e-5,
rtol=1e-3,
)

# def test_lr_pairwise_scores(self) -> None:
# pairwise_scores = self.analyzer.load_pairwise_scores(scores_name="single_gpu_qb")
#
Expand Down

0 comments on commit f0b77f0

Please sign in to comment.