-
Notifications
You must be signed in to change notification settings - Fork 490
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
6 changed files
with
2,775 additions
and
0 deletions.
There are no files selected for viewing
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
#!/usr/bin/env python | ||
# coding: utf-8 | ||
|
||
|
||
#infrence code to detect font styles. | ||
|
||
|
||
|
||
import torch | ||
import torch.nn as nn | ||
import torch.optim as optim | ||
from torch.optim import lr_scheduler | ||
import numpy as np | ||
import torchvision | ||
from torchvision import datasets, models, transforms | ||
import matplotlib.pyplot as plt | ||
import time | ||
import os | ||
import pandas as pd | ||
from sklearn.model_selection import train_test_split | ||
import shutil | ||
import time | ||
import copy | ||
from PIL import Image | ||
import glob | ||
|
||
|
||
filepath = 'mask1_model_resnet50.pth' | ||
model = torch.load(filepath) | ||
|
||
|
||
class_names = ['with_mask', | ||
'without_mask' | ||
] | ||
|
||
|
||
|
||
def process_image(image): | ||
''' Scales, crops, and normalizes a PIL image for a PyTorch model, | ||
returns an Numpy array | ||
''' | ||
|
||
# TODO: Process a PIL image for use in a PyTorch model | ||
pil_image = Image.open(image) | ||
#pil_image = image | ||
|
||
image_transforms = transforms.Compose([ | ||
transforms.Resize(256), | ||
transforms.CenterCrop(224), | ||
transforms.ToTensor(), | ||
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | ||
]) | ||
|
||
img = image_transforms(pil_image) | ||
return img | ||
|
||
|
||
|
||
|
||
def classify_face(image_path): | ||
device = torch.device("cpu") | ||
img = process_image(image_path) | ||
print('image_processed') | ||
img = img.unsqueeze_(0) | ||
img = img.float() | ||
|
||
model.eval() | ||
model.cpu() | ||
output = model(img) | ||
print(output,'##############output###########') | ||
_, predicted = torch.max(output, 1) | ||
print(predicted.data[0],"predicted") | ||
|
||
|
||
classification1 = predicted.data[0] | ||
index = int(classification1) | ||
print(class_names[index]) | ||
return class_names[index] | ||
|
||
if __name__ == '__main__': | ||
map_location=torch.device('cpu') | ||
image_path = 'IMG20200402191409_02.jpg' | ||
label = classify_face(image_path) | ||
print("the label is", label) | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,98 @@ | ||
#!/usr/bin/env python | ||
# coding: utf-8 | ||
|
||
|
||
|
||
|
||
import torch | ||
import torch.nn as nn | ||
import torch.optim as optim | ||
from torch.optim import lr_scheduler | ||
import numpy as np | ||
import torchvision | ||
from torchvision import datasets, models, transforms | ||
import matplotlib.pyplot as plt | ||
import time | ||
import os | ||
import pandas as pd | ||
from sklearn.model_selection import train_test_split | ||
import shutil | ||
import time | ||
import copy | ||
from PIL import Image | ||
import glob | ||
import cv2 | ||
|
||
|
||
filepath = 'mask1_model_resnet50.pth' | ||
model = torch.load(filepath) | ||
|
||
|
||
class_names = ['with_mask', | ||
'without_mask' | ||
] | ||
|
||
|
||
|
||
def process_image(image): | ||
''' Scales, crops, and normalizes a PIL image for a PyTorch model, | ||
returns an Numpy array | ||
''' | ||
|
||
# TODO: Process a PIL image for use in a PyTorch model | ||
#pil_image = Image.open(image) | ||
pil_image = image | ||
|
||
image_transforms = transforms.Compose([ | ||
transforms.Resize(256), | ||
transforms.CenterCrop(224), | ||
transforms.ToTensor(), | ||
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]) | ||
]) | ||
|
||
img = image_transforms(pil_image) | ||
return img | ||
|
||
|
||
|
||
|
||
def classify_face(image): | ||
device = torch.device("cpu") | ||
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | ||
#im_pil = image.fromarray(image) | ||
#image = np.asarray(im) | ||
im = Image.fromarray(image) | ||
image = process_image(im) | ||
print('image_processed') | ||
img = image.unsqueeze_(0) | ||
img = image.float() | ||
|
||
model.eval() | ||
model.cpu() | ||
output = model(image) | ||
print(output,'##############output###########') | ||
_, predicted = torch.max(output, 1) | ||
print(predicted.data[0],"predicted") | ||
|
||
|
||
classification1 = predicted.data[0] | ||
index = int(classification1) | ||
print(class_names[index]) | ||
return class_names[index] | ||
|
||
|
||
|
||
if __name__ == '__main__': | ||
#map_location=torch.device('cpu') | ||
image = cv2.imread('praj.jpg') | ||
label = classify_face(image) | ||
print("the label is", label) | ||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,113 @@ | ||
absl-py==0.9.0 | ||
asn1crypto==1.3.0 | ||
astor==0.8.0 | ||
attrs==19.3.0 | ||
backcall==0.1.0 | ||
beautifulsoup4==4.8.2 | ||
bleach==3.1.0 | ||
blis==0.2.4 | ||
Bottleneck==1.3.1 | ||
certifi==2019.11.28 | ||
cffi==1.14.0 | ||
chardet==3.0.4 | ||
click==7.1.1 | ||
cryptography==2.8 | ||
cycler==0.10.0 | ||
cymem==2.0.2 | ||
dataclasses==0.6 | ||
decorator==4.4.1 | ||
defusedxml==0.6.0 | ||
efficientnet==1.1.0 | ||
entrypoints==0.3 | ||
fastai==1.0.60 | ||
fastprogress==0.2.2 | ||
gast==0.3.3 | ||
glob3==0.0.1 | ||
google-pasta==0.1.8 | ||
grpcio==1.16.1 | ||
h5py==2.10.0 | ||
idna==2.8 | ||
imageio==2.8.0 | ||
importlib-metadata==1.5.0 | ||
imutils==0.5.3 | ||
ipykernel==5.1.4 | ||
ipython==7.12.0 | ||
ipython-genutils==0.2.0 | ||
jedi==0.16.0 | ||
Jinja2==2.11.1 | ||
joblib==0.14.1 | ||
jsonschema==3.2.0 | ||
jupyter-client==5.3.4 | ||
jupyter-core==4.6.1 | ||
Keras==2.2.4 | ||
Keras-Applications==1.0.8 | ||
Keras-Preprocessing==1.1.0 | ||
kiwisolver==1.1.0 | ||
Markdown==3.1.1 | ||
MarkupSafe==1.1.1 | ||
matplotlib==3.1.3 | ||
mistune==0.8.4 | ||
mkl-fft==1.0.15 | ||
mkl-random==1.1.0 | ||
mkl-service==2.3.0 | ||
murmurhash==1.0.2 | ||
nbconvert==5.6.1 | ||
nbformat==5.0.4 | ||
networkx==2.4 | ||
notebook==6.0.3 | ||
numexpr==2.7.1 | ||
numpy==1.18.1 | ||
olefile==0.46 | ||
packaging==20.1 | ||
pandas==1.0.1 | ||
pandocfilters==1.4.2 | ||
parso==0.6.1 | ||
pexpect==4.8.0 | ||
pickleshare==0.7.5 | ||
Pillow==7.1.0 | ||
plac==0.9.6 | ||
preshed==2.0.1 | ||
prometheus-client==0.7.1 | ||
prompt-toolkit==3.0.3 | ||
protobuf==3.11.3 | ||
ptyprocess==0.6.0 | ||
pycparser==2.19 | ||
pygame==1.9.6 | ||
Pygments==2.5.2 | ||
pyOpenSSL==19.1.0 | ||
pyparsing==2.4.6 | ||
pyrsistent==0.15.7 | ||
PySocks==1.7.1 | ||
python-dateutil==2.8.1 | ||
pytz==2019.3 | ||
PyWavelets==1.1.1 | ||
PyYAML==5.3 | ||
pyzmq==18.1.1 | ||
requests==2.22.0 | ||
scikit-image==0.16.2 | ||
scikit-learn==0.22.1 | ||
scipy==1.4.1 | ||
Send2Trash==1.5.0 | ||
six==1.14.0 | ||
soupsieve==1.9.5 | ||
spacy==2.1.8 | ||
srsly==0.1.0 | ||
tensorboard==1.14.0 | ||
tensorflow==1.14.0 | ||
tensorflow-estimator==1.14.0 | ||
termcolor==1.1.0 | ||
terminado==0.8.3 | ||
testpath==0.4.4 | ||
thinc==7.0.8 | ||
torch==1.3.1 | ||
torchvision==0.4.2 | ||
tornado==6.0.3 | ||
tqdm==4.42.1 | ||
traitlets==4.3.3 | ||
urllib3==1.25.8 | ||
wasabi==0.2.2 | ||
wcwidth==0.1.8 | ||
webencodings==0.5.1 | ||
Werkzeug==1.0.0 | ||
wrapt==1.11.2 | ||
zipp==2.2.0 |
Oops, something went wrong.