-
Notifications
You must be signed in to change notification settings - Fork 490
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
9 changed files
with
188 additions
and
0 deletions.
There are no files selected for viewing
Binary file added
BIN
+744 Bytes
mask_classifier/Data_Generator/__pycache__/Augment_img.cpython-37.pyc
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,18 @@ | ||
import cv2 | ||
import os | ||
from mask import create_mask | ||
|
||
|
||
folder_path = "/home/preeth/Downloads" | ||
#dist_path = "/home/preeth/Downloads" | ||
|
||
#c = 0 | ||
images = [os.path.join(folder_path, f) for f in os.listdir(folder_path) if os.path.isfile(os.path.join(folder_path, f))] | ||
for i in range(len(images)): | ||
print("the path of the image is", images[i]) | ||
#image = cv2.imread(images[i]) | ||
#c = c + 1 | ||
create_mask(images[i]) | ||
|
||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,170 @@ | ||
import os | ||
import sys | ||
import random | ||
import argparse | ||
import numpy as np | ||
from PIL import Image, ImageFile | ||
|
||
__version__ = '0.3.0' | ||
|
||
|
||
IMAGE_DIR = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'images') | ||
DEFAULT_IMAGE_PATH = os.path.join(IMAGE_DIR, 'default-mask.png') | ||
BLACK_IMAGE_PATH = os.path.join(IMAGE_DIR, 'black-mask.png') | ||
BLUE_IMAGE_PATH = os.path.join(IMAGE_DIR, 'blue-mask.png') | ||
RED_IMAGE_PATH = os.path.join(IMAGE_DIR, 'red-mask.png') | ||
|
||
|
||
def cli(): | ||
parser = argparse.ArgumentParser(description='Wear a face mask in the given picture.') | ||
parser.add_argument('pic_path', help='Picture path.') | ||
parser.add_argument('--show', action='store_true', help='Whether show picture with mask or not.') | ||
parser.add_argument('--model', default='hog', choices=['hog', 'cnn'], help='Which face detection model to use.') | ||
group = parser.add_mutually_exclusive_group() | ||
group.add_argument('--black', action='store_true', help='Wear black mask') | ||
group.add_argument('--blue', action='store_true', help='Wear blue mask') | ||
group.add_argument('--red', action='store_true', help='Wear red mask') | ||
args = parser.parse_args() | ||
|
||
pic_path = args.pic_path | ||
if not os.path.exists(args.pic_path): | ||
print(f'Picture {pic_path} not exists.') | ||
sys.exit(1) | ||
|
||
if args.black: | ||
mask_path = BLACK_IMAGE_PATH | ||
elif args.blue: | ||
mask_path = BLUE_IMAGE_PATH | ||
elif args.red: | ||
mask_path = RED_IMAGE_PATH | ||
else: | ||
mask_path = DEFAULT_IMAGE_PATH | ||
|
||
FaceMasker(pic_path, mask_path, args.show, args.model).mask() | ||
|
||
|
||
def create_mask(image_path): | ||
pic_path = image_path | ||
mask_path = "/media/preeth/Data/prajna_files/mask_creator/face_mask/images/blue-mask.png" | ||
show = False | ||
model = "hog" | ||
FaceMasker(pic_path, mask_path, show, model).mask() | ||
|
||
|
||
|
||
class FaceMasker: | ||
KEY_FACIAL_FEATURES = ('nose_bridge', 'chin') | ||
|
||
def __init__(self, face_path, mask_path, show=False, model='hog'): | ||
self.face_path = face_path | ||
self.mask_path = mask_path | ||
self.show = show | ||
self.model = model | ||
self._face_img: ImageFile = None | ||
self._mask_img: ImageFile = None | ||
|
||
def mask(self): | ||
import face_recognition | ||
|
||
face_image_np = face_recognition.load_image_file(self.face_path) | ||
face_locations = face_recognition.face_locations(face_image_np, model=self.model) | ||
face_landmarks = face_recognition.face_landmarks(face_image_np, face_locations) | ||
self._face_img = Image.fromarray(face_image_np) | ||
self._mask_img = Image.open(self.mask_path) | ||
|
||
found_face = False | ||
for face_landmark in face_landmarks: | ||
# check whether facial features meet requirement | ||
skip = False | ||
for facial_feature in self.KEY_FACIAL_FEATURES: | ||
if facial_feature not in face_landmark: | ||
skip = True | ||
break | ||
if skip: | ||
continue | ||
|
||
# mask face | ||
found_face = True | ||
self._mask_face(face_landmark) | ||
|
||
if found_face: | ||
if self.show: | ||
self._face_img.show() | ||
|
||
# save | ||
self._save() | ||
else: | ||
print('Found no face.') | ||
|
||
def _mask_face(self, face_landmark: dict): | ||
nose_bridge = face_landmark['nose_bridge'] | ||
nose_point = nose_bridge[len(nose_bridge) * 1 // 4] | ||
nose_v = np.array(nose_point) | ||
|
||
chin = face_landmark['chin'] | ||
chin_len = len(chin) | ||
chin_bottom_point = chin[chin_len // 2] | ||
chin_bottom_v = np.array(chin_bottom_point) | ||
chin_left_point = chin[chin_len // 8] | ||
chin_right_point = chin[chin_len * 7 // 8] | ||
|
||
# split mask and resize | ||
width = self._mask_img.width | ||
height = self._mask_img.height | ||
width_ratio = 1.2 | ||
new_height = int(np.linalg.norm(nose_v - chin_bottom_v)) | ||
|
||
# left | ||
mask_left_img = self._mask_img.crop((0, 0, width // 2, height)) | ||
mask_left_width = self.get_distance_from_point_to_line(chin_left_point, nose_point, chin_bottom_point) | ||
mask_left_width = int(mask_left_width * width_ratio) | ||
mask_left_img = mask_left_img.resize((mask_left_width, new_height)) | ||
|
||
# right | ||
mask_right_img = self._mask_img.crop((width // 2, 0, width, height)) | ||
mask_right_width = self.get_distance_from_point_to_line(chin_right_point, nose_point, chin_bottom_point) | ||
mask_right_width = int(mask_right_width * width_ratio) | ||
mask_right_img = mask_right_img.resize((mask_right_width, new_height)) | ||
|
||
# merge mask | ||
size = (mask_left_img.width + mask_right_img.width, new_height) | ||
mask_img = Image.new('RGBA', size) | ||
mask_img.paste(mask_left_img, (0, 0), mask_left_img) | ||
mask_img.paste(mask_right_img, (mask_left_img.width, 0), mask_right_img) | ||
|
||
# rotate mask | ||
angle = np.arctan2(chin_bottom_point[1] - nose_point[1], chin_bottom_point[0] - nose_point[0]) | ||
rotated_mask_img = mask_img.rotate(angle, expand=True) | ||
|
||
# calculate mask location | ||
center_x = (nose_point[0] + chin_bottom_point[0]) // 2 | ||
center_y = (nose_point[1] + chin_bottom_point[1]) // 2 | ||
|
||
offset = mask_img.width // 2 - mask_left_img.width | ||
radian = angle * np.pi / 180 | ||
box_x = center_x + int(offset * np.cos(radian)) - rotated_mask_img.width // 2 | ||
box_y = center_y + int(offset * np.sin(radian)) - rotated_mask_img.height // 2 | ||
|
||
# add mask | ||
self._face_img.paste(mask_img, (box_x, box_y), mask_img) | ||
|
||
def _save(self): | ||
path_splits = os.path.splitext(self.face_path) | ||
new_face_path = path_splits[0] + '-with-mask' + path_splits[1] | ||
self._face_img.save(new_face_path) | ||
print(f'Save to {new_face_path}') | ||
|
||
@staticmethod | ||
def get_distance_from_point_to_line(point, line_point1, line_point2): | ||
distance = np.abs((line_point2[1] - line_point1[1]) * point[0] + | ||
(line_point1[0] - line_point2[0]) * point[1] + | ||
(line_point2[0] - line_point1[0]) * line_point1[1] + | ||
(line_point1[1] - line_point2[1]) * line_point1[0]) / \ | ||
np.sqrt((line_point2[1] - line_point1[1]) * (line_point2[1] - line_point1[1]) + | ||
(line_point1[0] - line_point2[0]) * (line_point1[0] - line_point2[0])) | ||
return int(distance) | ||
|
||
|
||
if __name__ == '__main__': | ||
#cli() | ||
create_mask(image_path) |