Skip to content

Commit

Permalink
Add descriptions for math symbols.
Browse files Browse the repository at this point in the history
  • Loading branch information
pvc1989 committed May 7, 2024
1 parent 27331f2 commit 89128c6
Showing 1 changed file with 16 additions and 11 deletions.
27 changes: 16 additions & 11 deletions programming/csapp/2_bits_bytes_ints_floats.md
Original file line number Diff line number Diff line change
Expand Up @@ -26,21 +26,26 @@ V \coloneqq \left(s\,\underbrace{e_{k-1}\cdots e_{1}\,e_{0}}_{e}\,\overbrace{f_{
= (-1)^s \times 2^{E(e)} \times M(f)
$$

![](https://csapp.cs.cmu.edu/3e/ics3/data/fp-cases.pdf)
其中
- $e$ 为 $k$ 位二进制整数,其值为 $\sum_{i=0}^{k-1}2^i\times e_i$
- $f$ 为 $n$ 位[二进制小数](#二进制小数),其值为 $\sum_{i=1}^n 2^{-i}\times f_{-i}$
- 单精度 $k+n=8+23$
- 双精度 $k+n=11+52$

![](https://csapp.cs.cmu.edu/3e/ics3/data/fp-formats.pdf)

记 $b \coloneqq 2^{k-1} - 1$,则除特殊值外
- $E(e) \coloneqq (e \mathbin{?} e : 1) - b$
- $M(f) \coloneqq (e \mathbin{?} 1 : 0) - b$

| | 退化情形 | 常规情形 | 特殊值 |
| :--------: | :---------------------: | :------------------: | :------: |
| $(e_i)_{i=0}^{k-1}$ | 全为 $0$ | 既有 $0$ 又有 $1$ | 全为 $1$ |
| $e$ | $0$ | $\sum_{i=0}^{k-1}2^ie_i\in[1,2^k-2]$ | $\sum_{i=0}^{k-1}2^i=2^k-1$ |
| $e$ | $0$ | $\sum_{i=0}^{k-1}2^i e_i\in[1,2^k-2]$ | $\sum_{i=0}^{k-1}2^i=2^k-1$ |
| $E$ | $1-b$ | $e-b$ | |
| $M$ | $0+f=\sum_{i=1}^n 2^{-i}f_{-i}$​​​​ | $1+f=1+\sum_{i=1}^n 2^{-i}f_{-i}$ | |
| $M$ | $0+f=\sum_{i=1}^n 2^{-i}f_{-i}$ | $1+f=1+\sum_{i=1}^n 2^{-i}f_{-i}$ | |
| $\vert V\vert$ | $2^{1-b}\times(0+f)$ | $2^{e-b}\times(1+f)$ | $ f \mathbin{?} \text{NaN} : \infty$ |
| $\min$ | $0$ | $2^{1-b}$ | |
| $\max$ | $2^{1-b}(1-2^{-n})$​​ | $2^b(2-2^{-n})$ | |
| $\min$ | $0$ | $2^{1-b}$ | |
| $\max$ | $2^{1-b}(1-2^{-n})$ | $2^b(2-2^{-n})$ | |

其中
- 单精度 $k+n=8+23$
- 双精度 $k+n=11+52$
- $b \coloneqq 2^{k-1} - 1$

![](https://csapp.cs.cmu.edu/3e/ics3/data/fp-formats.pdf)
![](https://csapp.cs.cmu.edu/3e/ics3/data/fp-cases.pdf)

0 comments on commit 89128c6

Please sign in to comment.