Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix MarginalModel with Data containers #304

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
10 changes: 6 additions & 4 deletions pymc_experimental/model/marginal_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -212,8 +212,10 @@ def logp(self, vars=None, **kwargs):
return m._logp(vars=vars, **kwargs)

def clone(self):
m = MarginalModel()
vars = self.basic_RVs + self.potentials + self.deterministics + self.marginalized_rvs
m = MarginalModel(coords=self.coords)
model_vars = self.basic_RVs + self.potentials + self.deterministics + self.marginalized_rvs
data_vars = [var for name, var in self.named_vars.items() if var not in model_vars]
vars = model_vars + data_vars
cloned_vars = clone_replace(vars)
vars_to_clone = {var: cloned_var for var, cloned_var in zip(vars, cloned_vars)}
m.vars_to_clone = vars_to_clone
Expand Down Expand Up @@ -598,7 +600,7 @@ def replace_finite_discrete_marginal_subgraph(fgraph, rv_to_marginalize, all_rvs
# can ultimately be generated that is proportional to the support domain and not
# to the variables dimensions
# We don't need to worry about this if the RV is scalar.
if np.prod(constant_fold(tuple(rv_to_marginalize.shape))) > 1:
if np.prod(constant_fold(tuple(rv_to_marginalize.shape), raise_not_constant=False)) != 1:
if not is_elemwise_subgraph(rv_to_marginalize, dependent_rvs_input_rvs, dependent_rvs):
raise NotImplementedError(
"The subgraph between a marginalized RV and its dependents includes non Elemwise operations. "
Expand Down Expand Up @@ -682,7 +684,7 @@ def finite_discrete_marginal_rv_logp(op, values, *inputs, **kwargs):
# batched dimensions of the marginalized RV

# PyMC does not allow RVs in the logp graph, even if we are just using the shape
marginalized_rv_shape = constant_fold(tuple(marginalized_rv.shape))
marginalized_rv_shape = constant_fold(tuple(marginalized_rv.shape), raise_not_constant=False)
marginalized_rv_domain = get_domain_of_finite_discrete_rv(marginalized_rv)
marginalized_rv_domain_tensor = pt.moveaxis(
pt.full(
Expand Down
26 changes: 26 additions & 0 deletions pymc_experimental/tests/model/test_marginal_model.py
Original file line number Diff line number Diff line change
Expand Up @@ -598,3 +598,29 @@ def test_is_conditional_dependent_static_shape():
x2 = pt.matrix("x2", shape=(9, 5))
y2 = pt.random.normal(size=pt.shape(x2))
assert not is_conditional_dependent(y2, x2, [x2, y2])


def test_data_container():
"""Test that MarginalModel can handle Data containers."""
with MarginalModel(coords_mutable={"obs": [0]}) as marginal_m:
x = pm.MutableData("x", 2.5)
idx = pm.Bernoulli("idx", p=0.7, dims="obs")
y = pm.Normal("y", idx * x, dims="obs")

marginal_m.marginalize([idx])

logp_fn = marginal_m.compile_logp()

with pm.Model(coords_mutable={"obs": [0]}) as m_ref:
x = pm.MutableData("x", 2.5)
y = pm.NormalMixture("y", w=[0.3, 0.7], mu=[0, x], dims="obs")

ref_logp_fn = m_ref.compile_logp()

for i, x_val in enumerate((-1.5, 2.5, 3.5), start=1):
for m in (marginal_m, m_ref):
m.set_dim("obs", new_length=i, coord_values=tuple(range(i)))
pm.set_data({"x": x_val}, model=m)

ip = marginal_m.initial_point()
np.testing.assert_allclose(logp_fn(ip), ref_logp_fn(ip))
Loading