Skip to content

Commit

Permalink
Analytical PCM righthand side of CPHF, analytic derivative of V_ia(q) (
Browse files Browse the repository at this point in the history
…#298)

* C-PCM righthand side of CPHF, analytic derivative of V_munu(q), trash implementation that works

* dVia/dx works for IEFPCM

* SSVPE is different from ICEPCM without contraction

* Small mistake

* Remove ngrids * nao * nao memory bottleneck of pcm V_munu matrix derivative

* Fix linter error

* Remove natm * 3 * nao * nao memory bottleneck, now the bottleneck is natm * 3 * nmo * nocc. Also bug fix here and there

* Remove the numerical implementation of dVia/dx

* Change finite difference implementation to test

* Remove abuse use of cp.einsum and cp.zeros

* Reorganize code for 2nd derivative term
  • Loading branch information
henryw7 authored Jan 9, 2025
1 parent 0427e6a commit 9b694fa
Show file tree
Hide file tree
Showing 10 changed files with 1,197 additions and 146 deletions.
191 changes: 182 additions & 9 deletions gpu4pyscf/gto/int3c1e_ip.py
Original file line number Diff line number Diff line change
Expand Up @@ -105,7 +105,7 @@ def get_int3c1e_ip(mol, grids, charge_exponents, intopt):
int3c_angular_slice = cart2sph(int3c_angular_slice, axis=2, ang=lj)
int3c_angular_slice = cart2sph(int3c_angular_slice, axis=3, ang=li)

int3c_grid_slice[:, :, j0:j1, i0:i1] = int3c_angular_slice
int3c_grid_slice[:, :, i0:i1, j0:j1] = int3c_angular_slice.transpose(0,1,3,2)

ao_idx = np.argsort(intopt._ao_idx)
grid_idx = np.arange(p1-p0)
Expand Down Expand Up @@ -193,10 +193,69 @@ def get_int3c1e_ip1_charge_contracted(mol, grids, charge_exponents, charges, int
int1e_angular_slice = cart2sph(int1e_angular_slice, axis=1, ang=lj)
int1e_angular_slice = cart2sph(int1e_angular_slice, axis=2, ang=li)

int1e_charge_contracted[:, j0:j1, i0:i1] = int1e_angular_slice
int1e_charge_contracted[:, i0:i1, j0:j1] = int1e_angular_slice.transpose(0,2,1)

return intopt.unsort_orbitals(int1e_charge_contracted, axis=[1,2])

def get_int3c1e_ip1_density_contracted(mol, grids, charge_exponents, dm, intopt):
omega = mol.omega
assert omega >= 0.0, "Short-range one electron integrals with GPU acceleration is not implemented."

ngrids = grids.shape[0]
grids = cp.asarray(grids, order='C')
if charge_exponents is not None:
charge_exponents = cp.asarray(charge_exponents, order='C')

dm = cp.asarray(dm)
assert dm.ndim == 2
assert dm.shape[0] == dm.shape[1] and dm.shape[0] == mol.nao

dm = intopt.sort_orbitals(dm, [0,1])
if not mol.cart:
cart2sph_transformation_matrix = intopt.cart2sph
# TODO: This part is inefficient (O(N^3)), should be changed to the O(N^2) algorithm
dm = cart2sph_transformation_matrix @ dm @ cart2sph_transformation_matrix.T
dm = dm.flatten(order='F') # Column major order matches (i + j * n_ao) access pattern in the C function

nao = intopt._sorted_mol.nao

i_atom_of_each_shell = intopt._sorted_mol._bas[:, ATOM_OF]
i_atom_of_each_shell = cp.array(i_atom_of_each_shell, dtype=np.int32)

ip1_per_atom = cp.zeros([mol.natm, 3, ngrids])

for cp_ij_id, _ in enumerate(intopt.log_qs):
stream = cp.cuda.get_current_stream()

log_q_ij = intopt.log_qs[cp_ij_id]

nbins = 1
bins_locs_ij = np.array([0, len(log_q_ij)], dtype=np.int32)

charge_exponents_pointer = c_null_ptr()
if charge_exponents is not None:
charge_exponents_pointer = charge_exponents.data.ptr

err = libgint.GINTfill_int3c1e_ip1_density_contracted(
ctypes.cast(stream.ptr, ctypes.c_void_p),
intopt.bpcache,
ctypes.cast(grids.data.ptr, ctypes.c_void_p),
ctypes.cast(charge_exponents_pointer, ctypes.c_void_p),
ctypes.c_int(ngrids),
ctypes.cast(ip1_per_atom.data.ptr, ctypes.c_void_p),
bins_locs_ij.ctypes.data_as(ctypes.c_void_p),
ctypes.c_int(nbins),
ctypes.c_int(cp_ij_id),
ctypes.cast(dm.data.ptr, ctypes.c_void_p),
ctypes.cast(i_atom_of_each_shell.data.ptr, ctypes.c_void_p),
ctypes.c_int(nao),
ctypes.c_double(omega))

if err != 0:
raise RuntimeError('GINTfill_int3c1e_charge_contracted failed')

return ip1_per_atom

def get_int3c1e_ip2_density_contracted(mol, grids, charge_exponents, dm, intopt):
omega = mol.omega
assert omega >= 0.0, "Short-range one electron integrals with GPU acceleration is not implemented."
Expand Down Expand Up @@ -290,6 +349,82 @@ def get_int3c1e_ip2_density_contracted(mol, grids, charge_exponents, dm, intopt)

return int3c_density_contracted

def get_int3c1e_ip2_charge_contracted(mol, grids, charge_exponents, charges, gridslice, output, intopt):
omega = mol.omega
assert omega >= 0.0, "Short-range one electron integrals with GPU acceleration is not implemented."

ngrids = grids.shape[0]
grids = cp.asarray(grids, order='C')
if charge_exponents is not None:
charge_exponents = cp.asarray(charge_exponents, order='C')

assert charges.ndim == 1 and charges.shape[0] == grids.shape[0]
charges = cp.asarray(charges).astype(np.float64)

charges = charges.reshape([-1, 1], order='C')
grids = cp.concatenate([grids, charges], axis=1)

n_atom = len(gridslice)
i_atom_of_each_charge = [[i_atom] * (gridslice[i_atom][1] - gridslice[i_atom][0]) for i_atom in range(n_atom)]
i_atom_of_each_charge = sum(i_atom_of_each_charge, [])
i_atom_of_each_charge = cp.array(i_atom_of_each_charge, dtype=np.int32)

assert isinstance(output, cp.ndarray)
assert output.shape == (n_atom, 3, mol.nao, mol.nao)

for cp_ij_id, _ in enumerate(intopt.log_qs):
cpi = intopt.cp_idx[cp_ij_id]
cpj = intopt.cp_jdx[cp_ij_id]
li = intopt.angular[cpi]
lj = intopt.angular[cpj]

stream = cp.cuda.get_current_stream()

log_q_ij = intopt.log_qs[cp_ij_id]

nbins = 1
bins_locs_ij = np.array([0, len(log_q_ij)], dtype=np.int32)

i0, i1 = intopt.cart_ao_loc[cpi], intopt.cart_ao_loc[cpi+1]
j0, j1 = intopt.cart_ao_loc[cpj], intopt.cart_ao_loc[cpj+1]
ni = i1 - i0
nj = j1 - j0

ao_offsets = np.array([i0, j0], dtype=np.int32)
strides = np.array([ni, ni*nj], dtype=np.int32)

charge_exponents_pointer = c_null_ptr()
if charge_exponents is not None:
charge_exponents_pointer = charge_exponents.data.ptr

int1e_angular_slice = cp.zeros([n_atom, 3, j1-j0, i1-i0], order='C')

err = libgint.GINTfill_int3c1e_ip2_charge_contracted(
ctypes.cast(stream.ptr, ctypes.c_void_p),
intopt.bpcache,
ctypes.cast(grids.data.ptr, ctypes.c_void_p),
ctypes.cast(charge_exponents_pointer, ctypes.c_void_p),
ctypes.c_int(ngrids),
ctypes.cast(int1e_angular_slice.data.ptr, ctypes.c_void_p),
strides.ctypes.data_as(ctypes.c_void_p),
ao_offsets.ctypes.data_as(ctypes.c_void_p),
bins_locs_ij.ctypes.data_as(ctypes.c_void_p),
ctypes.c_int(nbins),
ctypes.c_int(cp_ij_id),
ctypes.cast(i_atom_of_each_charge.data.ptr, ctypes.c_void_p),
ctypes.c_double(omega))

if err != 0:
raise RuntimeError('GINTfill_int3c1e_charge_contracted failed')

i0, i1 = intopt.ao_loc[cpi], intopt.ao_loc[cpi+1]
j0, j1 = intopt.ao_loc[cpj], intopt.ao_loc[cpj+1]
if not mol.cart:
int1e_angular_slice = cart2sph(int1e_angular_slice, axis=2, ang=lj)
int1e_angular_slice = cart2sph(int1e_angular_slice, axis=3, ang=li)

output[np.ix_(range(n_atom), range(3), intopt._ao_idx[i0:i1], intopt._ao_idx[j0:j1])] += int1e_angular_slice.transpose(0,1,3,2)

def get_int3c1e_ip1_charge_and_density_contracted(mol, grids, charge_exponents, dm, charges, intopt):
dm = cp.asarray(dm)
if dm.ndim == 3:
Expand All @@ -302,7 +437,7 @@ def get_int3c1e_ip1_charge_and_density_contracted(mol, grids, charge_exponents,
assert dm.shape[0] == dm.shape[1] and dm.shape[0] == mol.nao

int3c_ip1 = get_int3c1e_ip1_charge_contracted(mol, grids, charge_exponents, charges, intopt)
int3c_ip1 = cp.einsum('xji,ij->xi', int3c_ip1, dm)
int3c_ip1 = cp.einsum('xij,ij->xi', int3c_ip1, dm)
return int3c_ip1

def get_int3c1e_ip2_charge_and_density_contracted(mol, grids, charge_exponents, dm, charges, intopt):
Expand All @@ -319,13 +454,18 @@ def int1e_grids_ip1(mol, grids, charge_exponents=None, dm=None, charges=None, di
$$\left(\frac{\partial}{\partial \vec{A}} \mu \middle| \frac{1}{|\vec{r} - \vec{C}|} \middle| \nu\right)$$
where $\mu(\vec{r})$ centers at $\vec{A}$ and $\nu(\vec{r})$ centers at $\vec{B}$.
If charges is not None, the function computes the following contraction:
If charges is not None and density is None, the function computes the following contraction:
$$\sum_{C}^{n_{charge}} q_C \left(\frac{\partial}{\partial \vec{A}} \mu \middle| \frac{1}{|\vec{r} - \vec{C}|} \middle| \nu\right)$$
where $q_C$ is the charge centered at $\vec{C}$.
If charges is not None and dm is not None, the function computes the following contraction:
$$\sum_\nu^{n_{ao}} D_{\mu\nu} \sum_{C}^{n_{charge}} q_C
\left(\frac{\partial}{\partial \vec{A}} \mu \middle| \frac{1}{|\vec{r} - \vec{C}|} \middle| \nu\right)$$
If dm is not None and charges is None, the function computes the following contraction:
$$\sum_{\mu \in \{\text{AO of atom A}\}} \sum_\nu^{n_{ao}} D_{\mu\nu}
\left(\frac{\partial}{\partial \vec{A}} \mu \middle| \frac{1}{|\vec{r} - \vec{C}|} \middle| \nu\right)$$
The output dimension is $(n_{atom}, 3, n_{charge})$.
'''
assert grids is not None

Expand All @@ -340,25 +480,31 @@ def int1e_grids_ip1(mol, grids, charge_exponents=None, dm=None, charges=None, di

if dm is None and charges is None:
return get_int3c1e_ip(mol, grids, charge_exponents, intopt)[0]
else:
assert charges is not None
elif charges is not None:
if dm is not None:
return get_int3c1e_ip1_charge_and_density_contracted(mol, grids, charge_exponents, dm, charges, intopt)
else:
return get_int3c1e_ip1_charge_contracted(mol, grids, charge_exponents, charges, intopt)
else:
assert dm is not None
return get_int3c1e_ip1_density_contracted(mol, grids, charge_exponents, dm, intopt)

def int1e_grids_ip2(mol, grids, charge_exponents=None, dm=None, charges=None, direct_scf_tol=1e-13, intopt=None):
r'''
This function computes
$$\left(\mu \middle| \frac{\partial}{\partial \vec{C}} \frac{1}{|\vec{r} - \vec{C}|} \middle| \nu\right)$$
where $\mu(\vec{r})$ centers at $\vec{A}$ and $\nu(\vec{r})$ centers at $\vec{B}$.
If dm is not None, the function computes the following contraction:
If dm is not None and charges is None, the function computes the following contraction:
$$\sum_{\mu, \nu}^{n_{ao}} D_{\mu\nu} \left(\mu \middle| \frac{\partial}{\partial \vec{C}} \frac{1}{|\vec{r} - \vec{C}|} \middle| \nu\right)$$
If dm is not None and charges is not None, the function computes the following contraction:
$$q_C \sum_{\mu, \nu}^{n_{ao}} D_{\mu\nu} \left(\mu \middle| \frac{\partial}{\partial \vec{C}} \frac{1}{|\vec{r} - \vec{C}|} \middle| \nu\right)$$
where $q_C$ is the charge centered at $\vec{C}$.
If charges is not None and dm is None, the function computes the following contraction:
$$\sum_{C}^{n_{charge}} q_C \left(\mu \middle| \frac{\partial}{\partial \vec{C}} \frac{1}{|\vec{r} - \vec{C}|} \middle| \nu\right)$$
Notice that this summation should not be performed if the charges originates from different atomic centers.
'''
assert grids is not None

Expand All @@ -373,9 +519,36 @@ def int1e_grids_ip2(mol, grids, charge_exponents=None, dm=None, charges=None, di

if dm is None and charges is None:
return get_int3c1e_ip(mol, grids, charge_exponents, intopt)[1]
else:
assert dm is not None
elif dm is not None:
if charges is not None:
return get_int3c1e_ip2_charge_and_density_contracted(mol, grids, charge_exponents, dm, charges, intopt)
else:
return get_int3c1e_ip2_density_contracted(mol, grids, charge_exponents, dm, intopt)
else:
assert charges is not None
output = cp.zeros([1, 3, mol.nao, mol.nao])
get_int3c1e_ip2_charge_contracted(mol, grids, charge_exponents, charges, [[0, grids.shape[0]]], output, intopt)
return output.reshape([3, mol.nao, mol.nao])

def int1e_grids_ip2_charge_contracted(mol, grids, charges, gridslice, output, charge_exponents=None, direct_scf_tol=1e-13, intopt=None):
r'''
This function computes the following contraction:
$$\sum_{C \in \{\text{grid attached to atom A}\}} q_C
\left(\mu \middle| \frac{\partial}{\partial \vec{C}} \frac{1}{|\vec{r} - \vec{C}|} \middle| \nu\right)$$
where $q_C$ is the charge centered at $\vec{C}$. The output dimension is $(n_{atom}, 3, n_{ao}, n_{ao})$.
'''
assert grids is not None
assert charges is not None
assert gridslice is not None
assert output is not None

if intopt is None:
intopt = VHFOpt(mol)
intopt.build(direct_scf_tol, aosym=False)
else:
assert isinstance(intopt, VHFOpt), \
f"Please make sure intopt is a {VHFOpt.__module__}.{VHFOpt.__name__} object."
assert hasattr(intopt, "density_offset"), "Please call build() function for VHFOpt object first."
assert not intopt.aosym

return get_int3c1e_ip2_charge_contracted(mol, grids, charge_exponents, charges, gridslice, output, intopt)
58 changes: 0 additions & 58 deletions gpu4pyscf/gto/moleintor.py

This file was deleted.

Loading

0 comments on commit 9b694fa

Please sign in to comment.